Problem sheet 3

1. It is a bit too tricky to type in detail. The way to do it is to use the Havel-Hakimi algorithm (from the part of the notes entitled "Graphic sequences, adjacency matrix". There are 4 examples in the course notes.
It works by repeatedly computing the sequence d^{\prime} out of d. Since the length of the sequence and the numbers in it both decrease, it stops at some point, and it stops either with a sequence with only zeroes (comes from a graph), or a sequence with some negative numbers (does not come from a graph). This is step 1.
Then to construct the corresponding graph, we follow the proof of " d ' graphic $\Rightarrow d$ graphic", so we go "backwards" in the procedure that we used to show that the sequence is graphic. This is step 2.
The only points to pay attention to are, in step 1: That after each computation of d^{\prime} it is necessary to put the sequence back into increasing order (it is one of the hypotheses of the theorem). In step 2: After each application of " d ' graphic $\Rightarrow d$ graphic", we need to change the order of the vertices to get the degree sequence to correspond to the d^{\prime} from the previous step. See the examples in the course notes.
In this exercise, both sequences are graphic.
2. " \Rightarrow " Let $C=u_{1} u_{2} \ldots u_{n}$ be a cycle containing e. We can start numbering the vertices of the cycle such that the first edge is e, i.e. $e=u_{1} u_{2}$ (it simplifies the notation). We show that $G \backslash\{e\}$ is connected: Let a, b be vertices in $G \backslash\{e\}$. Since G is connected there is a walk from a to b. If this walk does not contain e, it is still a walk in $G \backslash\{e\}$. If it does contain e it is of the form

$$
a v_{1} \ldots v_{k} u_{1} u_{2} w_{1} \ldots w_{\ell} b
$$

If we replace $e=u_{1} u_{2}$ by the "other side of the cycle" we obtain a walk:

$$
a v_{1} \ldots v_{k} u_{1} u_{n} u_{n-1} \ldots u_{3} u_{2} w_{1} \ldots w_{\ell} b
$$

from a to b that does not use e. So a is connected to b in $G \backslash\{e\}$.
" \Leftarrow " Write $e=u v$. Since e is not a bridge, $G \backslash\{e\}$ is connected so there is a path

$$
u u_{1} \ldots u_{k} v
$$

from u to v in $G \backslash\{e\}$. Therefore $v u u_{1} \ldots u_{k} v$ is a cycle in G.
3. Write $W_{1}=a_{1} a_{2} \ldots a_{k+1}$ and $W_{2}=b_{1} b_{2} \ldots b_{k+1}$ where the a_{i} and b_{j} are vertices of G.
We assume that W_{1} and W_{2} have no vertex in common. Since G is connected there is a path P in G from the first vertex in W_{1} to the first vertex in W_{2}. This path cannot always be in W_{1}, otherwise we would have a vertex in both W_{1} and W_{2}. Similarly this path cannot be always in W_{2}.
Let a_{r} be the last vertex in P that is in W_{1} and b_{s} the first vertex in P, that is after a_{r} and in W_{2}.

The length of the path in W_{1} from a_{1} to a_{r} is r and from a_{r} to a_{k+1} is $k-r$ (make a picture with $k=4$ and $r=1$). One of them is at least $k / 2$. We assume it is the path from a_{1} to a_{r} (the other case is similar).
Also, the the length of the path in W_{2} from b_{1} to b_{s} is s and from b_{s} to b_{k+1} is $k-s$. Again one of them is of length at least $k / 2$, let us assume it is the path from b_{1} to b_{s} (again, the other case will be similar).

We now build a new path in G as follows: We follow W_{1} from a_{1} to a_{r} (this part of the path has length $r \geq k / 2$), then P from a_{r} to b_{s} (observe that by choice of a_{s} and b_{s} there are no elements of W_{1} or W_{2} in this partion of P; this part of the path has length at least one since $\left.a_{r} \neq b_{s}\right)$) and finally we follow W_{2} from b_{s} to b_{1} (this part of the path has length $r \geq k / 2$). This new path has therefore length greater than $k / 2+k / 2=k$, which is a contradiction.
4. No solution, just base your drawings on Euler's description of Eulerian graphs.

