Problem sheet 1

1.

2. Re-reading the definition of the complement, it means that you put in G^{c} exactly the edges that are missing from G.
(a)

(b) In K_{n} you have all possible edges, so there are no missing edges. So in K_{n}^{c} you only have n vertices with no edges between them.
3. (a) No, because the number of vertices of odd degree must be even.
(b) Yes (try to make a picture of it).
(c) No: Start with the vertices of degree 4: All 3 of them are linked to all other vertices, which means that every vertex has degree at least 3 .
(d) No: One vertex has degree 4, which is impossible since there are only 3 other vertices.
4. (a) See next question for an example.
(b) Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of this graph. The first column gives the number of edges between v_{1} and v_{1}, \ldots, v_{4}, the second column the number of edges between v_{2} and v_{1}, \ldots, v_{4}, etc. A possible drawing for this graph is

