Problem sheet 1

1.

(a)

2. Re-reading the definition of the complement, it means that you put in G^c exactly the edges that are missing from G.

- (b) In K_n you have all possible edges, so there are no missing edges. So in K_n^c you only have *n* vertices with no edges between them.
- 3. (a) No, because the number of vertices of odd degree must be even.
 - (b) Yes (try to make a picture of it).
 - (c) No: Start with the vertices of degree 4: All 3 of them are linked to all other vertices, which means that every vertex has degree at least 3.
 - (d) No: One vertex has degree 4, which is impossible since there are only 3 other vertices.
- 4. (a) See next question for an example.
 - (b) Let v_1, v_2, v_3, v_4 be the vertices of this graph. The first column gives the number of edges between v_1 and v_1, \ldots, v_4 , the second column the number of edges between v_2 and v_1, \ldots, v_4 , etc. A possible drawing for this graph is

