Problem sheet 1

1. Let $G=(V, E)$ be a graph. The line graph of G, denoted $L(G)$ is the graph that has E as set of vertices (i.e., the edges of G become the vertices of $L(G)$), and such that for every $e_{1}, e_{2} \in E$, there is an edge in $L(G)$ between e_{1} and e_{2} if and only if the edges e_{1} and e_{2} have a common vertex in G.

Draw the line graph of this graph G (keep the labels a, b, c, d, e, f for the edges of G, so that a, b, c, d, e, f are the vertices of $L(G)$).

2. The completement G^{c} of a graph $G=(V, E)$ is the graph with vertex set V and such that two vertices are adjacent in G^{c} if and only if they are not adjacent in G.
(a) Draw an example of G^{c}, for some graph G of your choice.
(b) Describe the graph $\left(K_{n}\right)^{c}$.
3. Are there graphs with the following degree sequences (produce such a graph, or explain why there is no such graph):
(a) $2,2,2,3$
(b) 1,2,2,3,4
(c) $2,2,4,4,4$
(d) $1,2,3,4$

Hint for the final two: Consider what these numbers mean in term of how the vertices would be connected.
4. Let $G=(V, E)$ be a pseudograph with set of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The adjacency matrix of G is the matrix $\left(a_{i, j}\right)$ with $1 \leq i, j \leq n$ where $a_{i, j}$ is the number of edges in G from v_{i} to v_{j}.
(a) Determine the adjacency matrix of two pseudographs of your choice.
(b) Draw a picture of a pseudograph with adjacency matrix

$$
\left(\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 \\
1 & 2 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

