Weather Radar

Kieran Commins

Met Éireann

RADAR METEOROLOGY

- An introduction to the measurement of precipitation by Weather Radar.
- Presentation of the fundamentals involved in Radar Meteorology
- Understanding of the physical process involved
- Appreciation of the errors and problems involved.
- Interpretation of data

Radar Basics

- **RADAR** = **R**Adio Detection and **R**anging
- Discovered in Britain
- Radio transmissions deflected by passing aircraft
- Lead to development of Radar during WW2

Radar and Weather

- Rainfall was seen by radar
- Regarded as 'contamination'
- Many radar have 'weather filters' to remove weather signals
- BUT some saw the potential is using radar for tracking precipitation

David Atlas US Airforce & MIT

- Early radar needed an operator and hand draw the results
- Major development was digitization and automation from early 80's
- Since then, resolution and quality and well as coverage has improved

Weather Radar

Radar Components

- Steerable Antenna
- Transmitter
- Receiver
- Control Unit
- Signal processor
- Pre-processor

Antenna

- Directs the transmitted energy in a beam
- Collects the returned power
- Gain depends on the Diameter and wavelength
- A 4.2m antenna has a gain of 48,000 or 47dB
- Beam width of 0.82^o for the Dublin and Shannon Radars

Chilbolton research radar, UK

Radome

- •Protects antenna from wind and rain
- •Less stress on antenna drives
- •Shelter of personnel working on the antenna
- •Sandwich construction 'tuned' to the radar wavelength

Radar ... Schematic Drawing

Radar Ranging

range = 1/2ct
c=speed of light
t=time taken for
pulse to travel to
target and back

Radar Scanning

- Radar sends out a stream of pulses
- Antenna rotates
- Builds up a 'picture' of the echoes

Radar Polar Volume

Data Collecting and Sampling

Shannon Radar

Range Cell 1000 m x 1.0⁰ 64 Range Elements Range Element 250m x 0.1^o

Shannon Radar

240 km

PPI Plan-position Indicator

Radar Meteorology

A little Physics!

Some definitions

Antenna Gain:

 $gain = \frac{power with antenna}{isotropic power}$ or in terms of dB $g = 10\log_{10} \left[\frac{power with antenna}{isotropic power} \right] dB$

Point Target

- Radar sends out a pulse
- Scattered by the target
- Some power returns to the receiver

Scattering from a Point Target

- Radar Pulse is scattered by the target in all directions
- Only a small fraction of the power is returned to the receiver

Power received from a Point Target.

$P_{r} = \frac{P_{t}g^{2}A_{t}A_{e}}{(4\pi)^{2}4}$

where

- $P_r = Received Power$
- $P_t = transmitted Power$
- g = antenna gain

 $A_t = Target Area$ $A_e = Antenna$ effective area r = range

Meteorological Targets

- Many targets each raindrop!
- Power returned is the SUM of the powers from all the targets

Meteorological Targets

Power received from Meteorological Targets

where

- P_r = mean power over several pulses.
- h = pulse length
- $A_e = Effective Antenna Area$

r = range

- F = fraction of the beam filled with targets
- K = attenuation factor
- σ_i = scattering cross section of each drop

Pulse Volume

Pulse Volume

 ϕ is the beamwidth and h the pulse length

Note the r² above the line; this partly cancels the 1/r⁴ rule found in the Power from a Point Target.

Cross-section of Meteorological Targets

Cross-section:

where

$$K = \frac{m^2 - 1}{m^2 + 2}$$

and m is a complex refractive index = 0.93 for water and 0.197 for ice. $D_i = Diameter \text{ of } a \text{ drop}$

The Radar Equation

Power Received from Precipitation

 $P_{t} = transmitted power \quad l = atmospheric attenuation factor$ $g = antenna \ gain \qquad D_{i} = drop \ diameter$ $\theta \phi h = pulse \ volume \qquad \lambda = wavelength$

Radar Equation

- For a given radar, most elements are constants
- Equation simplifies to:

z = reflectivityC = constant

Scattering from large and small targets

Reflectivity

• Radar measures the reflectivity of precipitation

• The reflectivity (z) is related to the size of drops

Reflectivity and Rainfall..2 Effect of drop size.

- 1 Drop, 1mm diameter in 1 m³:
 - $1^6 = 1$
 - z = 0 dBZ
- 1000 Drops, 0.1 mm diameter
 - $z = 1000 x (0.1)^6 = 0.001$
 - z = -30 dBz
- Same amount of liquid in both cases!

Reflectivity and Rainfall..3 Impossible Problem?

• NO!

Rainfall depends on drop size
 large drops --> heavy rain

amall drops drizzla

small drops -- > drizzle

large drops have higher vertical velocities

more water reached the surface

- small drops low vertical velocities
 - remain suspended for much longer

Reflectivity and Rainfall..4 Z-R Relationship

- A definite relationship between Z and R has been found by empirical methods:
 - $\mathbf{z} = \mathbf{a} \mathbf{R}^{\mathbf{b}}$
- Standard relationship used in Ireland, UK and many other countries is:
 - $z = 200 R^{1.6}$
- Marshall Palmer Relationship.
- Applies particularly to frontal rain.

Summary

- Radar measures **REFLECTIVITY** not rainfall
- Reflectivity is proportional to **SIXTH** power of the drop size
- Rainfall is deduced from reflectivity by an empirical relationship
- Heavy rainfall is over-estimated
- Light rainfall/drizzle is under-estimated

End of the Physics....

Radars in Met Éireann

Radars in Met Éireann

- Two radars: At Dublin and Shannon Airports
- Using radar since the 60's.
- First radar were manually operated and reports generated every 3 hours
- Shannon radar digitized in 1984, Dublin in 1991.
- Both upgraded in 2010-2011

Radar in Met Éireann

- Modern radars installed in the 90's
- Scan every 5 minutes to a range of 250 km with a 1km resolution.
- Archives dating from 1997.
- Accumulation data from 1998.
- Do not use telemetered raingauges or rain gauge corrections at present.

Single Site Radar Images

Irish Radar Composite

Animation -High Resolution Composite

- 2 radars
- Shannon
- Dublin
- Every 15 minutes
- Made in Dublin

Ireland Composite

Radars Included: Shannon Dublin

Castor Bay Crugygorllwyn Cobbacombe Cross

UK-Ireland Composite

- 12 Radars in
- Ireland, Jersey and
- the UK

24 hour accumulation

Short range 75km 1000m height

Distribution is even

24 hour accumulation

240km range

Intensities fall off at long ranges

14 Nov 2002

- Major rainfall event
- Flooding of Tolka and Liffey.
- 24 Hour accumulation

14th Nov 2002

• Close up of Dublin Area

• Intense areas to the West of Dublin

Future

- Much research is being carried out on improving radar rainfall measurements.
- New techniques involve dual-polarisation or even dual frequency radars but these are much more expensive.
- The next 10 years should see some major improvements.

Differences between Meteorological and ATC Radars

- Elliptical Antenna giving a "fan" beam.
- High rotation speeds 15 rpm
- Wide beam width
- Suppression of all slowing moving targets especially weather.
- No vertical information rely on transponders for height information
- Some have a "Weather Channel" especially in USA

Radar Problems!

Radar problems

- Earth's curvature
- Ground Clutter
- Permanent Echoes
- Occultation by High Ground
- Bright Band
- ANAPROP

The Earth is Curved

The following does not apply if the Earth is flat!!!

Curved Earth

• The Earth is curved!

- This curvature is very significant for radars.
- At a distance of 250km, the lowest point visible to the radar is 12,000 – 14,000 ft above the surface.
- An entire rain system can exist below this level and may not be seen.

Earth'sCurvature

 Even though the beam is horizontal, it still rises above the Earth's surface

Lowest Radar beam Height Vs Distance

5000'

Shannon Radar

240 km

Weaker intensities at the longer ranges.

Radar only "sees" Tops of clouds.

Best signals near the radar.

Radar problems Ground Clutter

- caused by power in the antenna side lobes
- about 5% total power is in side lobes
- signal reflected by the ground and buildings
- worst within 10km of radar
- Permanent echoes from hills mountains or tall buildings
- Very evident on Dublin Radar display

Side Lobes

Permanent Echoes

Radar problems Ground Clutter Solutions

• Radar site

- Iow flat site : good
- hill top good for permanent echoes but clutter more of a problem
- Clutter Maps
 - subtract clutter recorder on a fine day
 - can be used at Dublin and Shannon
 - not very effective

Radar problems Ground Clutter Solutions

Doppler Suppression

- remove echoes with a velocity near zero
- loose some real data!
- Statistical MTI
 - examine a large number of echoes in each range cell
 - clutter has smaller spread that echoes from hydrometeors

Radar problems Occultation by High Ground

- Radar beam is partially or Totally blocked by hills.
- Get "shadows" in the rainfall patterns especially in Accumulation products

Radar problems Occultation by High Ground

• Partially Blocked Beam:

- correct affected cells by a % correction
- effective up to 50% blockage
- Totally Blocked Beam:
 - use nearest unblocked cells
 - use weighted mean of nearest neighbours
 - mark as blocked
- 3D Clutter and Occultation Scheme

Radar problems Bright Band

- Caused by melting snow
- Wet snow has higher reflectivity than either snow or rain
- Can be seen in vertical cross-sections
- Can lead to over-estimation of rainfall
- Solutions
 - visual examination
 - computer algorithms (experimental)

Bright Band

Bright Band Example 24th April 1998

UK Composite

Dublin CAPPI

Dublin MAX CAPPI

Radar problems ANAPROP

- Anomalous Propagation
- Normally refractive index decreases with height and bends beam down
- In ANAPROP refractive index changes and the beam can:
 - bend back to the ground OR
 - away from the ground

Anaprop

Anomalous Propagation; reflection of the radar beam from the Earth's Surface

Radar problems ANAPROP

- Sometimes distant coasts can be seen Welsh coast
- Solutions:
 - Doppler and Statistical suppression helps
 - usually visually identifiable

ANAPROP Example

Effect of the Sun

- Radar Receiver detects noise from the sun.
- Shows as a beam
- Sun is used to align the antenna
- Also strong ANAPROP on image

Radar Problems Incomplete Beam Filling

Partially within precipitation

100km

Totally filled

Above prec.

Institute of Physics Seminars 2012

240km

Radar Problems Rainfall Attenuation

Accumulation problems

- Instant values every 15 minutes
- Accuracy reduced with fast moving showers
- Some areas may be missed!

Accuracy

- Due to high dependence on the drop size distribution, accuracy in limited
- Best for frontal rainfall 50% accuracy
- Over estimates showers 50 200%
- Under estimates drizzle 50 100%
- Accuracy falls off badly at longer ranges, perhaps 5 - 10% > 200km
- Subject to contamination/occultation

Radar

Raingauges

Institute of Physics Seminars 2012

Vs

Raingauges

- These measure surface rainfall at a point.
- They are subject to errors wind causes loss of rainfall.
- But they much more accurate than radar.
- Modern raingauges can be telemetered automatically reporting data.

Raingauges

- Rainfall varies widely even over short distances.
- Even 600+ rainfall stations in Ireland cannot fully measure rainfall variations.
- "Hot spots" or areas of intense rainfall can be missed by gauges.

Shannon Radar

Close-up

Small scale but extreme variations in intensity.

Raingauges can easily miss these.

Radar and Raingauges

- The combination of Radar and Raingauges can significantly improve the accuracy of radar rainfall measurements.
- Radar data can be corrected by ground truth and the corrections interpolated to the rest of the data.
- Get a map with high spatial resolution with reasonable accuracy.

And finally

Summary

Some Pros and Cons of Radar

Advantages

- Good spatial resolution 1km x 1km
- Good temporal resolution 15 minute
- Good for surveillance esp. when networked
- Disadvantages
 - Poor rainfall rate accuracy
 - Poor rainfall accumulation accuracy
 - Interference from ground and other problems

Advantages of Radar

- Good spatial coverage wide area at good resolution
- Good temporal coverage typically 5 to 15 minutes intervals
- Possible to make accumulation maps
- Combine several radars to form regional composites

Uses of radar data

• Nowcasting

- River managment in conjunction with flow and hydrometric gauges. Well developed in the UK (Environment Agency and Met Office).
- Flood warnings.
- Hydrological studies.
- Climatological enquiries did it rain at a particular place?

Thank you

