High-Resolution Dual-Doppler Analysis of Tornadic Thunderstorms using a New Advection-Correction Technique

Presented by Katherine Willingham

Motivation

- Verify and complement results of the Neuro-Fuzzy Tornado Detection Algorithm (NFTDA)(Wang et al. 2008)
 - Compare dual-Doppler analysis with NFTDA detections and damage path
- Test a new formulation for advection-correction of radar data
 - Used for small scale features such as mesocyclones and tornadoes
- Compare dual-Doppler results with conceptual models of tornado and mesocyclone structures

Map of Radar Locations

What is the NFTDA?

The algorithm integrates tornadic signatures in both the velocity and spectral domains

- Verification done by using analytical simulations as well as real data collected by KOUN for two tornadic cases
 - 8 May 2003
 - 10 May 2003
- The NFTDA detects tornadoes even when shear signatures are degraded significantly
- The NFTDA extends the detectable range for tornadoes (Wang et al. submitted)

8 May 2003 Overview

8 May 2003 Tornado Path

- Tornado first reported in Moore, traveled through south OKC, across I-240 and Sooner Rd, across TAFB, across I-40 into SE Midwest City and into Choctaw
- Widespread F3 damage and small areas of F4 damage
- Maximum width 4/10 mi

figure from NWS

10 May 2003 Overview

72357 OUN Norman 100 16440 SLAT 35.21 SLON -97.45 SELV 357.0 12 SHOW 2.86 LIFT -7.62 ALLE LFTV -8.39 NAL SWET 204.0 200 LULL KINX 6.90 CTOT 14.70 VTOT 30.70 TOTL 45.40 CAPE 2528. NA 300 طلله CAPV 2698 CINS -178. NIL CINV -70.5 400 EQLV 171.0 EQTV 171.0 LFCT 673.3 LFCV 715.5 500 BRCH 33.00 600 BRCV 35.20 700 LCLT 289.9 LCLP 843.8 3117 m 800 MLTH 304.3 1464 900 MLMR 14.50 THCK 5763. PWAT 24.56 7.36 m 31 1 -40 -30 -20 -10 10 20 30 0 40 University of Wyoming 18Z 09 May 2003

10 May 2003 Tornado Path

Torrado Tor

• Widespread F2 damage with a small area of F3 damage.

figures from NWS

• Maximum width 1/2 mi

Data Processing

- Data was edited for quality and dealiasing was completed.
- A Cressman interpolation was used for coordinate transformation.
- A range dependent radius of influence n was used:

	WSR-88D data	TDWR data
Azimuthal Component	0.9°	0.9°
Elevation Component	0.9°	2.6°
Range Component	r*dA	r*dA

• The weight W for a particular gate value is calculated from

$$W = \frac{n^2 - r^2}{n^2 + r^2},$$

where n is the radius of influence and r is the range from the radar.

Analysis Grid and Data

<u>8 May 2003</u>

- δx=δy=250m
- δz=500m
- Radars used:
 - KOKC and KTLX
- Time analyzed:22:26 22:43 UTC

<u>10 May 2003</u>

- δx=δy=250m
- δz=500m
- Radars used:
 - KTLX and KOUN
- Time analyzed:
 - **•** 03:19 03:43 UTC

Patterns on the Go

Two types of unsteadiness:

Propagation. Pattern of unchanging for translates horizontally.

Evolution. Pattern changes in size, shape or intensity.

- Temporal-resolution-sensitive analysis products are prone to errors if the flow is sufficiently unsteady (flow time scales ≤ volume scan period).
- Examples of volume scan periods:

WSR-88D: 10 min clear air mode, 4-6 min precip mode

TDWR: 6 min, but 1 min for lowest tilt

Research radars (DOW, SMART-R, CASA, NWRT): <1min

Mitigating Temporal Errors

- Dual-Doppler wind analysis is a temporal-resolution-sensitive analysis product
- Advection-correction is used to mitigate propagation error
- Traditional methods use the frozen-turbulence hypothesis.

Frozen-turbulence hypothesis

For R: $\frac{DR}{Dt} = 0$, or equivalently $\frac{\partial R}{\partial t} + U\frac{\partial R}{\partial x} + V\frac{\partial R}{\partial y} = 0$.

For
$$\vec{v}$$
: $\frac{D\vec{v}}{Dt} = 0$, or equivalently $\frac{\partial\vec{v}}{\partial t} + U\frac{\partial\vec{v}}{\partial x} + V\frac{\partial\vec{v}}{\partial y} = 0$.

For
$$v_r$$
: $\frac{D^2(rv_r)}{Dt^2} = 0$, or equivalently $\left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x} + V\frac{\partial}{\partial y}\right)^2 (rv_r) = 0$.

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

- Goal: Improve analysis of small scale features embedded within (and advected by) larger-scale features.
- Idea: Spatially-variable U,V may improve analyses of tornadoes and other small/mesoscale phenomena
- Method: Apply a weak frozen-turbulence constraint on R with R-data supplied at two time levels. Determine U, V and advection corrected R, then use U, V to advection correct v_r

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

U,V,R are the fields that minimize a cost-function J_i, defined for the ith analysis surface as

$$J_{i} = \iiint \left[\alpha \left(\frac{\partial R}{\partial t} + U \frac{\partial R}{\partial x} + V \frac{\partial R}{\partial y} \right)^{2} + \beta |\nabla_{h} U|^{2} + \beta |\nabla_{h} V|^{2} \right] dx dy dt$$

with R imposed at two effective data times, $t=t_1$ and $t=t_1 + T$

α is a binary analysis coverage footprint function imposed with a strong constraint

$$\frac{\partial \alpha}{\partial t} + U \frac{\partial \alpha}{\partial x} + V \frac{\partial \alpha}{\partial y} = 0$$

- There must be data at both the start and end times for a trajectory to be calculated
 - α depends on the topology of data voids

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

• Set $\delta J=0$, integrate by parts. Leads to Euler-Lagrange equations for U,V and R:

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} - \frac{\alpha}{\beta T} \left[\int \frac{\partial R}{\partial t} \frac{\partial R}{\partial x} dt + U \int \left(\frac{\partial R}{\partial x} \right)^2 dt + V \int \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} dt \right] = 0$$

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} - \frac{\alpha}{\beta T} \left[\int \frac{\partial R}{\partial t} \frac{\partial R}{\partial y} dt + U \int \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} dt + V \int \left(\frac{\partial R}{\partial y} \right)^2 dt \right] = 0$$

$$\alpha \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} + V \frac{\partial}{\partial y} \right)^2 R + \alpha \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \right) \left(\frac{\partial R}{\partial t} + U \frac{\partial R}{\partial x} + V \frac{\partial R}{\partial y} \right)$$

$$+ \left(\frac{\partial \alpha}{\partial t} + U \frac{\partial \alpha}{\partial x} + V \frac{\partial \alpha}{\partial y} \right) \left(\frac{\partial R}{\partial t} + U \frac{\partial R}{\partial x} + V \frac{\partial R}{\partial y} \right) = 0$$

KTLX vr (m/s) 8 May 2003 22:26:10 UTC 600m AMSL

KTLX vr (m/s) 8 May 2003 22:31:07 UTC 600m AMSL

Spatially-variable pattern-translation components U,V for the following example scans

• Variability from about -8 to 25 m/s

KOKC Reflectivity (dBZ) 8 May 2003 22:27:17 UTC 0.6km

reflectivity 22:22:55

observed 22:25:16 | | advected 22:25:16

reflectivity 22:27:17

Advection Parameters T=262s TE=141s nt=16 b=100

The advection correction using spatially-variable patterntranslation components for this case is an improvement over any constant pattern-translation.

	Reflectivity Correlation	Radial Velocity Correlation	Reflectivity RMS Error	Radial Velocity RMS Error
Spatially Variable <i>U</i> , <i>V</i>	0.9764	0.9839	4.2307	1.4233
Constant U, V using Backward Trajectories	0.9528	0.9784	5.8740	1.7218
Constant U, V using Forward Trajectories	0.9330	0.9706	6.9547	1.9684

Dual-Doppler Wind Analysis

Simple, traditional dual-Doppler method intended for low elevation angles (< 10°)

$$u = \frac{(y - y_2)r_1v_{r_1} - (y - y_1)r_2v_{r_2}}{(x - x_1)(y - y_2) - (x - x_2)(y - y_1)}$$
$$v = \frac{(x - x_2)r_1v_{r_1} - (x - x_1)r_2v_{r_2}}{(x - x_2)(y - y_1) - (x - x_1)(y - y_2)}$$

 x and y are Cartesian coordinates for the analysis point, (x₁,y₁), (x₂,y₂) are locations of radars 1 and 2, r₁, r₂ are distances of the analysis point from radars 1 and 2, v_{r1}, v_{r2} are the radial velocities

Dual-Doppler Vertical Velocity Analysis

 Vertical velocity is calculated from mass conservation (Brandes 1977)

$$w = -e^{-kz} \int_{z_o}^z \delta e^{-kz'} dz'$$

where

$$=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}$$
 and

A,

$$k = -\frac{\partial}{\partial z} \ln \rho = \frac{1}{H}$$

Scale height H is set to 10km.

Au

 δ

Dual-Doppler Results

IO May 2003 03:19

NFTDA Detections

Wang et. al. submitted

Conclusions

- Quantitative verification of advection-correction using spatially-variable patterntranslation components in this case is an improvement on any constant patterntranslation.
- The tornado shear anomaly present in dual-Doppler horizontal winds consistent is with the damage path.
- The NFTDA detections were consistent with the damage path
 - The NFTDA did not detect the secondary, non-tornadic mesocyclone circulation 8 May 22:35
 - For this case and for the data analyzed, the NFTDA performed better than the TDA.
- Vertical velocity 10 May 03:19 shows arc shaped updraft
 - The arc shape is consistent with Differential Reflectivity from KOUN, indicating a precipitating flanking line.
 - Evaporational cooling from precipitation could have reinforced the RFD from the storm that led to enhanced convergence before the tornado

References

- Armijo, Larry, 1969: A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. J. Atmos. Sci., 26, 570-573.
- Brandes, Edward A., 1977: Flow in Severe Thunderstorms Observed by Dual- Doppler Radar. *Mon. Wea. Rev.*, 105, 113-120.
- Cressman, G. P., 1959: An Operational Objective Analysis System. *Mon. Wea. Rev.*, 87, 367-374.
- National Weather Service, <www.nws.noaa.gov>
- Shapiro, Alan, et al., submitted: A New Formulation of Advection-Correction for Radar Data.
- Storm Prediction Center, <www.spc.noaa.gov>
- Wang, Yadong, et. al., 2008: Tornado Detection Using a Neuro-Fuzzy System to Integrate Shear and Spectral Signatues.

