High-Resolution Dual-Doppler Analysis of Tornadic Thunderstorms using a New Advection-Correction Technique

Presented by Katherine Willingham

Motivation

- Verify and complement results of the Neuro-Fuzzy Tornado Detection Algorithm (NFTDA)(Wang et al. 2008)
- Compare dual-Doppler analysis with NFTDA detections and damage path
- Test a new formulation for advection-correction of radar data
- Used for small scale features such as mesocyclones and tornadoes
- Compare dual-Doppler results with conceptual models of tornado and mesocyclone structures

Map of Radar Locations

What is the NFTDA?

- The algorithm integrates tornadic signatures in both the velocity and spectral domains

- Verification done by using analytical simulations as well as real data collected by KOUN for two tornadic cases
- 8 May 2003
- 10 May 2003
- The NFTDA detects tornadoes even when shear signatures are degraded significantly
- The NFTDA extends the detectable range for tornadoes (Wang et al. submitted)

8 May 2003 Overview

8 May 2003 Tornado Path

- Tornado first reported in Moore, traveled through south OKC, across I-240 and Sooner Rd, across TAFB, across I-40 into SE Midwest City and into Choctaw
- Widespread F3 damage and small areas of F4 damage
- Maximum width $4 / 10 \mathrm{mi}$

figure from NWS

10 May 2003 Overview

10 May 2003 Tornado Path

figures from NWS

- Widespread F2 damage with a small area of F3 damage.
- Maximum width $1 / 2 \mathrm{mi}$

Data Processing

- Data was edited for quality and dealiasing was completed.
- A Cressman interpolation was used for coordinate transformation.
- A range dependent radius of influence n was used:

	WSR-88D data	TDWR data
Azimuthal Component	0.9°	0.9°
Elevation Component	0.9°	2.6°
Range Component	$\mathrm{r} * \mathrm{dA}$	$\mathrm{r}^{*} \mathrm{dA}$

- The weight W for a particular gate value is calculated from

$$
W=\frac{n^{2}-r^{2}}{n^{2}+r^{2}}
$$

where n is the radius of influence and r is the range from the radar.

Analysis Grid and Data

8 May 2003

- $\delta x=\delta y=250 \mathrm{~m}$
- $\delta z=500 \mathrm{~m}$
- Radars used:
- KOKC and KTLX
- Time analyzed:
- 22:26-22:43 UTC

10 May 2003

- $\delta x=\delta y=250 \mathrm{~m}$
- $\delta \mathrm{z}=500 \mathrm{~m}$
- Radars used:
- KTLX and KOUN
- Time analyzed:
- 03:19-03:43 UTC

Patterns on the Go

Two types of unsteadiness:
Propagation. Pattern of unchanging for translates horizontally.
Evolution. Pattern changes in size, shape or intensity.

- Temporal-resolution-sensitive analysis products are prone to errors if the flow is sufficiently unsteady (flow time scales \leq volume scan period).
- Examples of volume scan periods:

WSR-88D: 10 min clear air mode, 4-6 min precip mode
TDWR: 6 min , but 1 min for lowest tilt
Research radars (DOW, SMART-R, CASA, NWRT): <1min

Mitigating Temporal Errors

- Dual-Doppler wind analysis is a temporal-resolution-sensitive analysis product
- Advection-correction is used to mitigate propagation error
- Traditional methods use the frozen-turbulence hypothesis.

Frozen-turbulence hypothesis

For $R: \quad \frac{D R}{D t}=0$, or equivalently $\frac{\partial R}{\partial t}+U \frac{\partial R}{\partial x}+V \frac{\partial R}{\partial y}=0$.
For $\vec{v}: \quad D \vec{v}=0$, or equivalently $\frac{\partial \vec{v}}{\partial t}+U \frac{\partial \vec{v}}{\partial x}+V \frac{\partial \vec{v}}{\partial y}=0$.
For $v_{\mathrm{r}}: \quad \frac{D^{2}\left(r v_{r}\right)}{D t^{2}}=0$, or equivalently $\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}+V \frac{\partial}{\partial y}\right)^{2}\left(r v_{r}\right)=0$.

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

Goal: Improve analysis of small scale features embedded within (and advected by) larger-scale features.

Idea: Spatially-variable U,V may improve analyses of tornadoes and other small/mesoscale phenomena

Method: Apply a weak frozen-turbulence constraint on R with R-data supplied at two time levels. Determine U, V and advection corrected R , then use U, V to advection correct v_{r}

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

- U,V,R are the fields that minimize a cost-function J_{i}, defined for the $\mathrm{i}^{\text {th }}$ analysis surface as

$$
J_{i} \equiv \iiint\left[\alpha\left(\frac{\partial R}{\partial t}+U \frac{\partial R}{\partial x}+V \frac{\partial R}{\partial y}\right)^{2}+\beta\left|\nabla_{h} U\right|^{2}+\beta\left|\nabla_{h} V\right|^{2}\right] d x d y d t
$$

with R imposed at two effective data times, $t=t_{1}$ and $t=t_{l}+T$

- α is a binary analysis coverage footprint function imposed with a strong constraint

$$
\frac{\partial \alpha}{\partial t}+U \frac{\partial \alpha}{\partial x}+V \frac{\partial \alpha}{\partial y}=0
$$

- There must be data at both the start and end times for a trajectory to be calculated
- α depends on the topology of data voids

A New Formulation of Advection-Correction

(Shapiro et al. submitted)

- Set $\delta \mathrm{J}=0$, integrate by parts. Leads to Euler-Lagrange equations for U, V and R :

$$
\begin{aligned}
& \frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}-\frac{\alpha}{\beta T}\left[\int \frac{\partial R}{\partial t} \frac{\partial R}{\partial x} d t+U \int\left(\frac{\partial R}{\partial x}\right)^{2} d t+V \int \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} d t\right]=0 \\
& \frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}-\frac{\alpha}{\beta T}\left[\int \frac{\partial R}{\partial t} \frac{\partial R}{\partial y} d t+U \int \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} d t+V \int\left(\frac{\partial R}{\partial y}\right)^{2} d t\right]=0 \\
& \alpha\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}+V \frac{\partial}{\partial y}\right)^{2} R+\alpha\left(\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}\right)\left(\frac{\partial R}{\partial t}+U \frac{\partial R}{\partial x}+V \frac{\partial R}{\partial y}\right) \\
& +\left(\frac{\partial \alpha}{\partial t}+U \frac{\partial \alpha}{\partial x}+V \frac{\partial \alpha}{\partial y}\right)\left(\frac{\partial R}{\partial t}+U \frac{\partial R}{\partial x}+V \frac{\partial R}{\partial y}\right)=0
\end{aligned}
$$

Advected KTLX reflectivity (dBZ) 22:28:55 UTC 600m AMSL

KTLX vr (m/s) 8 May 2003 22:26:10 UTC 600m AMSL

Advected KTLX vr (m/s) 22:28:55 UTC 600m AMSL

KTLX vr (m/s) 8 May 2003 22:31:07 UTC 600m AMSL

Advection-Correction Results

Spatially-variable pattern-translation components U,V for the following example scans

- Variability from about -8 to $25 \mathrm{~m} / \mathrm{s}$

Advection-Correction Results

Advection-Correction Results

Advection-Correction Results

The advection correction using spatially-variable patterntranslation components for this case is an improvement over any constant pattern-translation.

	Reflectivity Correlation	Radial Velocity Correlation	Reflectivity RMS Error	Radial Velocity RMS Error
Spatially Variable U, V	0.9764	0.9839	4.2307	1.4233
Constant U, V using Backward Trajectories	0.9528	0.9784	5.8740	1.7218
Constant U, V using Forward Trajectories	0.9330	0.9706	6.9547	1.9684

Dual-Doppler Wind Analysis

- Simple, traditional dual-Doppler method intended for low elevation angles ($<10^{\circ}$)

$$
\begin{aligned}
& u=\frac{\left(y-y_{2}\right) r_{1} v_{r 1}-\left(y-y_{1}\right) r_{2} v_{r 2}}{\left(x-x_{1}\right)\left(y-y_{2}\right)-\left(x-x_{2}\right)\left(y-y_{1}\right)} \\
& v=\frac{\left(x-x_{2}\right) r_{1} v_{r 1}-\left(x-x_{1}\right) r_{2} v_{r 2}}{\left(x-x_{2}\right)\left(y-y_{1}\right)-\left(x-x_{1}\right)\left(y-y_{2}\right)}
\end{aligned}
$$

- x and y are Cartesian coordinates for the analysis point, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are locations of radars 1 and 2 , r_{1}, r_{2} are distances of the analysis point from radars 1 and 2,
$\mathrm{v}_{\mathrm{r} 1}, \mathrm{v}_{\mathrm{r} 2}$ are the radial velocities

Dual-Doppler Vertical Velocity Analysis

- Vertical velocity is calculated from mass conservation (Brandes 1977)

$$
w=-e^{-k z} \int^{z} \delta e^{-k z^{\prime}} d z^{\prime}
$$

$$
\delta=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \quad \text { and } \quad k=-\frac{\partial}{\partial z} \ln \rho=\frac{1}{H}
$$

Scale height H is set to 10 km .

Dual-Doppler Results

8 May 2003 22:26

Damage Path and Horizontal Winds 0.6km 8 May 2003 22:26:10 UTC

8 May 2003 22:31

KTLX Reflectivity (dBZ) 8 May 2003 22:31:07 UTC 0.6km

Horizontal Winds 1.6km 8 May 2003 22:32:51 UTC

Vertical Velocity 0.6km 8 May 2003 22:31:07 UTC

8 May 2003 22:35

KTLX Reflectivity (dBZ) 8 May 2003 22:35:26 UTC 0.6km

Damage Path and Horizontal Winds 0.6km 8 May 2003 22:35:26 UTC

Horizontal Winds 1.6km 8 May 2003 22:37:49 UTC

8 May 2003 22:40

KTLX Reflectivity (dBZ) 8 May 2003 22:40:22 UTC 0.6km

Horizontal Winds 1.6km 8 May 2003 22:42:23 UTC

10 May 2003 03:I9

Horizontal Winds 10 May 2003 03:19:39 UTC 1.3km

Horizontal Winds 10 May 2003 03:20:14 UTC 2.8km

Vertical Velocity (m/s) 10 May 2003 03:19:21 UTC 0.8 km

Vertical Velocity (m/s) 10 May 2003 03:19:39 UTC 1.3 km

Vertical Velocity (m/s) 10 May 2003 03:20:14 UTC 2.8 km

NFTDA Detections

Wang et. al. submitted

Conclusions

- Quantitative verification of advection-correction using spatially-variable patterntranslation components in this case is an improvement on any constant patterntranslation.
- The tornado shear anomaly present in dual-Doppler horizontal winds consistent is with the damage path.
- The NFTDA detections were consistent with the damage path
- The NFTDA did not detect the secondary, non-tornadic mesocyclone circulation 8 May 22:35
- For this case and for the data analyzed, the NFTDA performed better than the TDA.
- Vertical velocity 10 May 03:19 shows arc shaped updraft
- The arc shape is consistent with Differential Reflectivity from KOUN, indicating a precipitating flanking line.
- Evaporational cooling from precipitation could have reinforced the RFD from the storm that led to enhanced convergence before the tornado

References

- Armijo, Larry, 1969: A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. J. Atmos. Sci., 26, 570-573.
- Brandes, Edward A., 1977: Flow in Severe Thunderstorms Observed by Dual- Doppler Radar. Mon. Wea. Rev., 105, 113-120.
- Cressman, G. P., 1959: An Operational Objective Analysis System. Mon. Wea. Rev., 87, 367-374.
- National Weather Service, <www.nws.noaa.gov>
- Shapiro, Alan, et al., submitted: A New Formulation of Advection-Correction for Radar Data.
- Storm Prediction Center, <www.spc.noaa.gov>
- Wang, Yadong, et. al., 2008: Tornado Detection Using a Neuro-Fuzzy System to Integrate Shear and Spectral Signatues.

Questions?

Classic per-swors wo. 030
anlliga
Entliant
LIVING ON EARTH MAY BE EXPENSIVE,

BUT IT INCLUDES
AN ANNUAL FREE TRIP AROUND THE SUN.
(1) 2003 Ashlolgh Briliant, Box 539, Sunta Barisura CA 93102 (catalog \$2), www.ashlaighbrilllant.com

