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3 Dimensional Turbulence

Generation of small scale structure from large scale motion.

Described by Navier-Stokes equations :

∂~u

∂t
+ ~u · ∇~u = −∇p+ ν∇2~u+ ~f

∇ · ~u = 0
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Phenomenology of 3 Dimensional Turbulence in a Nutshell

Reynolds number R = LU
ν .

Energy injected into large
eddies.

Energy removed from small
eddies at viscous scale.

Transfer by interaction
between eddies.

Concept of inertial range

K41 : In the limit of ∞ R, all small scale statistical properties
depend only on the local scale, k, and the energy dissipation rate, ǫ.
Dimensional analysis :

E(k) = cǫ
2

3k−
5

3 Kolmogorov spectrum
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Two dimensional turbulence

Generation of large scale structure from small scale motion

Notion of an inverse cascade

Two dimensional turbulence looks really different to three
dimensions.

Why?
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Special Role of Vorticity in Two Dimensions

Vorticity, ω = ∇× ~u, is a scalar in 2D:

∂ω

∂t
+ (~u · ∇)ω = forcing + dissipation

where

~u = (ux, uy) =

(
∂ψ

∂y
,−∂ψ

∂x

)

with stream-function, ψ obtained from solving

ω = −∇2ψ.

In 2D, unlike 3D, both total energy, E =
∫
|~u|2 d~x and total

enstrophy, H =
∫
ω2d~x are conserved. This fact profoundly alters

the physics.
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Kraichnan-Leith-Batchelor Phenomenology

A stationary state requires two cascades with two independent
dissipation mechanisms with two fluxes :

Direct cascade of enstrophy from the forcing scale to small
scales. K41 Hypothesis gives

E(k) ∼ ζ
2

3k−3.

Inverse cascade of energy from the forcing scale to large
scales.

E(k) ∼ ǫ
2

3k−
5

3 .

This picture assumes infinite inertial ranges for both cascades.
In reality there are finite size effects which are more potent in
2D than in 3D.
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Are the KLB spectra realised?

Clean numerical or experimental observations of the KLB dual
cascade are difficult but possible (recent large simulations of
Boffetta, Celani et al.)

A problem occurs when the inverse cascade is blocked by the
largest scale - a fact which Kraichnan himself was aware of.

What is the true stationary spectrum of two dimensional
turbulence in a finite box?

Several contradictory scenarios in the literature.
Smith and Yakhot ("condensation" at large scales)

Borue (k−3 spectrum)

Tran and Bowman (k−3 and k−5/3)
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k
−5/3 spectrum at early times

L. Smith and V. Yakhot Phys. Rev. Lett. 1993:

Everyone(?) agrees that the k−5/3 scaling is correct during the
establishment of the inverse cascade.

For an infinite system this is the full story.

University College Dublin, July 2006 – p. 8



"Condensation" of energy at the large scales

Later times

For a finite system the front
cannot continue indefinitely.

No (or very little) large scale
dissipation

Inverse cascade eventually
reaches the largest scale, k0.

Compensated spectra show
energy pile-up at largest scale

Emergence of “condensate”
E(k) ∼ Ec(t) δ(k − k0) + Ẽ(k).
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Alternatively : k
−3 at later times

V. Borue Phys. Rev. Lett. 1994
Late times

Hypo-viscosity at large scales.

Inverse cascade probably
reaches the largest scale, k0,
but weakly.

Compensated stationary
spectra show k−3 scaling
(almost) everywhere.

No sign of condensation in the
sense of Smith and Yakhot.
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Or both spectra can co-exist?

Tran and Bowman Phys. Rev. E 2004 :
Late times

Almost no dissipation at large
scales.

Inverse cascade reaches the
largest scale, k0.

Observe a clean cross-over
from k−3 to k−

5

3 .

Non-stationary.

No "condensate".
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Forcing and dissipation

We force and dissipate the vorticity, ω, directly. The forcing and
dissipation are modeled in ~k-space as follows :

ω̇~k
+ NL

[
ω~k
, ψ~k

]
= f~k − γi(~k)ω~k

− γu(~k)ω~k

with

f~k =
√
F (k)ζ(~k, t) Intermediate scale forcing

γu(~k) = νu k
αu Small scale dissipation

γi(~k) = νi k
−αi Large scale dissipation

< ζ(~k1, t1)ζ(~k2, t2) >= δ(~k1 − ~k2)δ(t1 − t2) Physical values are
αi = 0 (friction) and αu = 2 (viscous dissipation)
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Realisation of the "normal" inverse cascade

If the large scale dissipation is strong enough we should be able to
arrest the k−5/3 before it reaches k0.
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Late times

Input energy flux ≈ 0.004.

Kolmogorov constant ≈ 5.5.

Very little direct cascade.

About 50% of energy goes
upscale and 50% downscale

Clean, stationary k−5/3 spec-
trum.
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Flow field in physical space
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Energy and Enstrophy Fluxes
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Fluxes are computed using standard expressions (eg
Kraichnan, 1967)

Behave as expected
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Critical value the large scale dissipation

Characteristic velocity fluctuation at scale r can be related to
the exponent of the energy spectrum :

(δv)r ∼ (ǫr)
x−1

2 E(k) ∼ k−x (1 < x < 3)

K-L-B spectra : x = 5/3 gives (δv)r ∼ (ǫr)1/3, x = 3 gives
(δv)r ∼ (ǫr)

Dissipation (large) scale, ξ, can be estimated by balancing
terms :

~v · ∇~v ∼ νi∇−αi~v ⇒ ξ = (νiǫ
−

1

3 )
−

3

2+3αi

Inverse cascade is blocked when ξ ∼ L. Occurs when the
dissipation is too weak. Critical value :

ν∗i = ǫ
1

3L−
2+3αi

3 .
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Stationary states for decreasingνi
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Click here to view the movie
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Spectra with decreasingνi
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For large dissipation you see a stationary 5/3 spectrum as
expected (range is small)

Deviations occur when the dissipation weakens.

Reasonable agreement with estimated value of ν∗i .
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Flow field in physical space

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

y

x

Velocity field
F4>6

University College Dublin, July 2006 – p. 19



Emergence of ak−3 regime
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Both −5/3 and −3 (stationary)
spectra can be observed
depending on the efficiency of
large scale dissipation.

Evidence is qualitative.
“Strength” of the coherent component of the flow depends on the
relative efficiencies of the forcing and large scale damping.
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Experimental measurements by Shats et al.
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Experimental measurements by Shats et al.

Experimental measurements
of spectra show k−5/3 at early
times.

Replaced by k−3.3 after the
emergence of the large scale
coherent part.

This k−3.3 is more robust than
the vortices themselves.

Physical space vorticity con-
figuration is dependent on the
boundary conditions.
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Is there a cross-over?
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Plot compensated spectra.

Answer : probably. Also
consistent with previous work.

Cross-over regime requires
tuning of parameters.
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Zero large scale dissipation
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k−3 seems to be established throughout the inertial range.

Spectrum is completely non-stationary.

Very large fluctuations in the energy - nonlocality?
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Growth of large scale mean flow
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Radial velocity profiles :
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Anatomy of the large scale vortices

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1

V
or

tic
ity

r

k_f=0.12
k_f=0.03

r^-1.25

Vorticity profile within each
vortex is approximately

Ω(r) ≈ r−1.25

This exponent lacks an
obvious theoretical
explanation.

Independent of the forcing
scale. Persists when pumping
is turned off.
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Statistics of velocity increments
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Moments of velocity increments (Yakhot et al.):

Sn(r) = 〈||(~u(~x+ ~r) − ~u(~x)) · ~r/r||n〉

“Flatness” F4(r) = S4(r)
S2(r)2

Measures deviation from Guassian statistics.

“Small scale intermittency” is entirely vortex dominated.
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Preliminary conclusions

There is still some work to be done to understand exactly what
is the final stationary spectrum of 2-D turbulence in a finite box
in the inverse cascade regime.

Considering finite size effects and tunable (large scale)
dissipation together allows a consistent picture at a qualitative
level.

Configurational details are probably not universal.

However, the emergence of a smooth coherent flow at large
scales might be a common signature of finite size effects.

Does this have anything to do with atmospheric science?
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