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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U 1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(un, ∆t/m)

un+2/m = U2(un+1/m, ∆t/m)

· · ·
un+1 = Um(un+(m−1)/m, ∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only 1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stable U i’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1∑
m=0

L−1∑
n=0

ûmne−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1∑
m=0

L−1∑
n=0

ρ̂mne−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

ûmn

(
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

)
= ρ̂mn∆2 (19.4.4)

or

ûmn =
ρ̂mn∆2

2
(

cos
2πm

J
+ cos

2πn

L
− 2

) (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute ρ̂mn as the Fourier transform

ρ̂mn =
J−1∑
j=0

L−1∑
l=0

ρjl e2πimj/Je2πinl/L (19.4.6)

• Compute ûmn from equation (19.4.5).
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider a Dirichlet boundary condition u = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2
J

2
L

J−1∑
m=1

L−1∑
n=1

ûmn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρ jl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute ρ̂mn by the sine transform

ρ̂mn =
J−1∑
j=1

L−1∑
l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute ûmn from the expression analogous to (19.4.5),

ûmn =
∆2ρ̂mn

2
(
cos

πm

J
+ cos

πn

L
− 2

) (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
∑

n

An sinh
nπx

L∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl =

2
L

L−1∑
n=1

An sinh
πnj

L
sin

πnl

L
(19.4.13)
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If f(y = l∆) ≡ fl, then we get An from the inverse formula

An =
1

sinh (πnJ/L)

L−1∑
l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uH
jl (19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore ρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u′ + uB (19.4.16)

where u′ = 0 on the boundary, while uB vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of uB would be

uB
J,l = fl (19.4.17)

The model equation (19.0.3) becomes

∇2u′ = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u′
j+1,l + u′

j−1,l + u′
j,l+1 + u′

j,l−1 − 4u′
j,l =

− (uB
j+1,l + uB

j−1,l + uB
j,l+1 + uB

j,l−1 − 4uB
j,l) + ∆2ρj,l

(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u′
J,l + u′

J−2,l + u′
J−1,l+1 + u′

J−1,l−1 − 4u′
J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions ∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2
J

2
L

J∑′′

m=0

L∑′′

n=0

ûmn cos
πjm

J
cos

πln

L
(19.4.22)
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Here the double prime notation means that the terms for m = 0 and m = J should
be multiplied by 1

2 , and similarly for n = 0 and n = L. Inhomogeneous terms
∇u = g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side. For
example, the condition

∂u

∂x
= g(y) at x = 0 (19.4.23)

becomes
u1,l − u−1,l

2∆
= gl (19.4.24)

where gl ≡ g(y = l∆). Once again we write the solution in the form (19.4.16),
where now ∇u′ = 0 on the boundary. This time ∇uB takes on the prescribed
value on the boundary, but uB vanishes everywhere except just outside the boundary.
Thus equation (19.4.24) gives

uB
−1,l = −2∆gl (19.4.25)

All the uB terms in equation (19.4.19) vanish except when j = 0:

u′
1,l + u′

−1,l + u′
0,l+1 + u′

0,l−1 − 4u′
0,l = 2∆gl + ∆2ρ0,l (19.4.26)

Thus u′ is the solution of a zero-gradient problem, with the source term modified
by the replacement

∆2ρ0,l → ∆2ρ0,l + 2∆gl (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the u’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the alternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

∂2u

∂x2
+

∂2u

∂y2
+ b(y)

∂u

∂y
+ c(y)u = g(x, y) (19.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in [1].
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The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B − 21 (19.4.30)

where the 21 comes from the x-differencing and the matrix B from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21 − T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for u J/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve u J/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].
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FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

ûk
j−2r + λ

(r)
k ûk

j + ûk
j+2r = ∆2g

(r)k
j (19.4.35)

Here λ
(r)
k is the eigenvalue of T(r) corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that λ
(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems for ûk
j at the levels

j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128×128
mesh, the optimal level is r = 2; asymptotically, r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r = 2 gives another factor
of two gain in speed.
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19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)


