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ABSTRACT

An idealized model of a vortex interacting with an initially straight frontal zone is developed. The nondivexget}t
vortex flow is a smoothly varying analog to a Rankine Combined Vortex. Local advection and frontogenesis
are calculated analytically at the initial time and used to approximate the temporal evolution of the system,

* during its early phases. Intuition suggests that the maximum deformation of the frontal zone should occur
near the radius of maximum winds. Results confirm our intuition, but also provide insights into how frontogenesis
proceeds in a real vortex. The calculations yield patterns surprisingly similar to observations of vortex interactions
with zones of high gradient on several scales, and seem to explain the compelling similarities between observed

vortex phenomena on widely different scales.

1. Introduction

The classical kinematic approach to frontogenesis

follows the work of Miller (1948) or Petterssen (1956). -

The definition of frontogenesis they give is
F = (d/dt)|VQ|, 1

where the operator d/dt follows the air parcels and
where @ = Q(x, y, z, t) is any quantity—say potential
temperature. The operator d/d! is further defined for
the general variable Q to be

49 _ 90 99
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where V is the horizontal velocity of the flow, V is the
horizontal del operator, and w is the vertical flow com-
ponent.

Strictly speaking, we are probably most interested
in the frontal gradient following the front, rather than
the air. Nevertheless, frontogenesis is considered here
to be defined by (1). Such an expression is perhaps
most appropsiate whenever ( is a conservative quantity
(i.e., dQ/dt = (). It is straightforward to show from
(1) and (2) that

dag aQ
F=ep [V( 7 ) VQ-V)ywv e Vw] , (3)
where eg is a unit vector in the direction of VQ—i.e.,
er=|VQ|"!VQ. The first term in (3) within the brackets
is the contribution to changes in parcel Q by noncon-
servative effects (e.g., diabatic effects if Q is the potential
temperature), the second represents the combined in-
fluences of divergence and deformation in the direction
of the frontal gradient and the third is the change of

horizontal gradients by tilting of vertical gradients re-
sulting from horizontal variations in vertical velocity.

For a purely horizontal flow, with Q absolutely con-
served, (3) reduces to

F = e [~(VQ-V)V]. “4)
Thus, under these somewhat restrictive conditions,
frontogenesis is accomplished purely by divergence and
deformation. It is common to write (4) in terms of the
kinematic properties of the flow—i.e.,

vl
"2 )

where (VQ is the magnitude of the horizontal Q gra-
dient, div is the horizontal divergence, defy is the re-
sultant deformation (see Saucier, 1955, p. 355ff), and
7 is the angle between the isopleths of Q and the re-
sultant deformation’s axis of dilatation.

Note that the vorticity does not appear in (5) [or in
(3), for that matter], which is usually explained by
noting that a field of pure rotation does not affect the
gradient but, rather, merely rotates it. This and related
concepts are examined in what is to follow. The ap-
proach taken is purely kinematic, so there is no scale
dependence, and the analysis applies equally well to
any systems that satisfy the assumptions, be they tur-
bulent eddies, mesoscale vortices, or extratropical cy-
clones. The approach taken is also analytic, rather than
numerical, in order to avoid the problems and com-
plicating issues of differencing schemes, numerical dif-
fusion, spatial truncation, etc. Insights gained by this
method would be lost or obscured in a numerical sim-
ulation, and even more so if the simulation accounted
for dynamics (e.g., Welander, 1955) although insights

F= (div ~ defr cos2vy).
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about other aspects might well be obtained in such a
simulation.

2. Kinematic properties of an idealized vortex

First, consider the four conventional kinematic
properties (vorticity, divergence, stretching and shear-
ing deformation). They are derived from the linear
properties of the wind field. That is, consider the Taylor
series expansion of the wind components at the point
X=X+ Ax,y =y + Ay,

ou ou *u
Up + — Ax + — Ay + —— Ax?

ax dy ax?

u u
AxAy + — AY* + - - -,
oy DAY+ 55 A
v v

ov
v(x, y)—vo+a—Ax+a—Ay+b—5Ax

v v
axdy AxAy+a 5

where uy = u(Xp, o) and vy = v{Xy, ¥o). Second order
(or higher) terms can be neglected when first order
terms are roughly an order of magnitude (or more)
larger than those of higher order. Thus, nonlinear terms
from (6) that satisfy inequalities like
(Ou/0x)Ax
(BPujoxdHAax: =
can be ignored. If conventional scaling approaches are
employed—i.e.,
w_v Fu_ ¥
ax L’ ox* L*’
where V is a velocity scale and L is a length scale,
then (7) becomes

ux, y) =

+2 (6a)

+2

Ay + -+, (6b)

(M

Ax < L/10. (8)

Thus, (6) and (8) imply that attention must be restricted
to a neighborhood of a point within a distance one-
tenth of a scaling length from that point, if the neglect
of the higher-order properties of the flow field is to be
valid.

Formally, this represents no real problem. We simply
compute the kinematic properties at a point—implic-
itly using the linear approximation—and any large
scale nonlinear properties of the flow are accounted
for by the point-to-point variation. Since frontogenesis
is computed in this fashion, it is clear that vorticity
can have no effect. The vorticity is constant within the
point’s neighborhood, so it can have no local influence
on the frontal gradient. However, it is equally obvious
that this assumption cannot be extended to larger do-
mains. Vorticity does not remain constant over any
realistic field (including our idealized vortex), which
means that “globally” the nonlinear nature of the wind
field eventually must play a role.
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In order to illustrate the situation, consider an ideal-
ized pattern of flow and Q-isopleths for which analytic
solutions can be obtained. The wind field is taken to
be a steady state, two-dimensional, nondivergent vortex
with a purely tangential wind (V7) field which depends
only on radius (r) from the origin according to

V(r) = sech’r tanhr. )

This field has been nondimensionalized via division
by a characteristic amplitude for the variation of Vr.
The flow field and its properties as a function of radius
are shown in Fig. 1. A plan view of the initial conditions
is revealed by Fig. 2. Note that the x and y components
of the flow are, respectively,

u(x, y) = —Vy(r) sind, (10a)
v(x, y) = +V(r) cosd, (10b)

where § = tan~'(y/x) and r = (x? + y*»"2 Differen-
tiating (9) and (10) appropriately, it can be shown
easily that the divergence is, indeed, zero. This vortex
can be thought of as a smoothly varying (i.e., one with
continuous derivatives) analogue to the Rankine
Combined Vortex. Further, it can be shown that

v 9 ta
o _d_ sechzr{sechzr — 2 tanh?r + nhr] ,
ox dy
(11a)
a
du _dv _ sechzr[Z tanh?r — sech?r
dx A8y
tanh
+22 ’] sin(29), (11b)
d i)
v 4 au_ sech2r[sech2r — 2 tanh?r
ox 8

tanh'] cos(28). (l1c)

The vorticity calculated from (11a) is shown in Fig.
1, as is the magnitude of the resultant deformation—
having combined (11b) and (11c) to show that

tanhr]

defg = sech®r

[2 tanh?r — sech’r + (12)

If the methods of Saucier are used, the angle of
inclination between the x-axis and the resultant de-
formation’s axis of dilatation is given by

(dv/dx + du/dy)

an2h) = Gujax — aviay) (13
Substitution of (11b) and (11c¢) into (13) gives
tan(28) = — 229 _ _ o), (14)

sin(26)
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FIG. 1. Radial structure of idealized vortex flow, showing the
tangential wind profile (thin solid line), the magnitude of the resultant
deformation (dashed line), and the vorticity (thick solid line) as
functions of radius. All variables are nondimensional.

or, simply, 8 = 8§ — w/4. These are shown on Fig. 2
at 45° intervals around the circle of maximum tan-
gential wind.

It is worthwhile to note that one can describe the
wind field (i.e., its /inear variation) using vorticity,
divergence and the two deformations. However, if the
flow is a purely nondivergent vortex, it is straightfor-
ward to show (Doswell, 1982) that neither deformation
can vanish everywhere in the field unless the entire
field is in solid body rotation. Thus, the proposed field
of nondivergent vorticity (which varies from point to
point) must contain areas of frontogenesis. Intuitively,
if the vorticity varies spatially, then any pre-existing
gradients are rotated at different rates—resulting in
deformations which, in turn, result in frontogenesis.
Apart from this, even pure (solid body) rotation, when
added to a field of pure deformation, can influence

frontogenesis by rotating a scalar field into or out of

favorable alignment with the axis of dilatation!
3. Frontogenesis calculations and time evolution of the

fields

In order to show how the vortex circulation influ-
ences a scalar field, consider an initial distribution of
a scalar quantity Q given by

Q(x, y) = —tanhy. (15)

The initial front is oriented along the x-axis, so there
is no initial variation of Q with x (Fig. 2). As with the
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definition of V7, this Q pattern is implicitly nondi-
mensionalized by some characteristic amplitude for
Q-variation. The initial distribution of Q is shown in
cross section in Fig. 3, along with its first two deriv-
atives.

Now, given (15) and the results of Section 2, an
explicit expression can be found for (5), the fronto-
genesis. First note that initially the angle of inclination
() between Q isopleths and the x-axis is zero. Thus,
by (14),

2752a—2ﬁ=—2/3=§—20. (16)
Since div = 0, F can easily be shown to be
1
F= 2 sech’r [2 tanh?r — sech’r
tanh
+ 20 r] cos(zzr- - 20)] sech?y. (17)

The calculation using (17) is shown in Fig. 4. The
pattern fits our intuition nicely—it is antisymmetric
about the y-axis. Note that the maximum magnitude
for frontogenesis occurs between the radius of maxi-
mum wind and the radius of maximum deformation.
This is a consequence of the initial conditions and the
location of maximum favorability (or unfavorability)
of the orientation of the dilatation axes with respect
to the maximum frontal gradients.

It is certainly of interest to see how this pattern
evolves with time. In principle, this means a solution
to the nonlinear advection equation—i.e.,

80/ot = ~V-VQ.

(18)

FIG. 2. Schematic plan view of the vortex circulation, showing
the initial distribution of the unspecified, nondimensional quantity
Q (X100—thin solid and dashed lines). The inner circle is at the
radius of maximum winds and the orientation of the resultant de-
formation’s dilatation axes are shown at 45° intervals around that
circle. The next circle outward is at the radius of maximum defg
(refer to Fig. 1). The locations of the extrema in &8Q/dy)/dy are
indicated by the dashed, double-dotted lines.
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FIG. 3. Cross-sectional (radial) presentation of the Q-field and
its first two derivatives at the initial time along the y-axis.

The right hand side of (18) at the initial moment is
simply found from

~V-VQ = —(udQ/dx + v3Q/dy),
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FIG. 4. Initial field (i.e., at = 1) of the frontogenesis. The solid
circle is at the radius of maximum winds, while the dashed circle is
at the radius of maximum deformation (about r = 0.85).
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using (10) and (18) and differentiating (15) appropri-
ately. Thus,

3Q/dt},-,, = sech?r tanhr sech?y cosf,  (19)

where #, is the initial time. The field of dQ/dr at
t = 1y is shown in Fig. 5. As one expects, maximum
advection is at the radius of maximum winds, along
the x-axis.

By introducing the only approximation needed to
obtain a solution for (18):
Q(x3 Y, t= tl)

~ QX y, L = to) + (3Q/00)|,-,AL  (20)
the new Q-field can be found. If Az (=t; — ) in these

nondimensional forms is set equal to unity, then (20)
becomes [using (19) and (15)]

ox, y,t=1)
= —tanhy + sech®r tanhr sech?y cosf. (21)

A plot of (21) is shown in Fig. 6. This also agrees nicely
with our intuition. At first glance, it seems that there
is no analytic expression for VQ at this point, so there
does not appear to be any way to carry this forward
any further. Note, however, that

AV Q)/at = V(8Q/dr). (22)

Thus, by applying the V-operator to (19), d(VQ)/dt
can be found using (22). After much tedious algebra,
it can be shown that

d(VQ)/dt = V{sech?r tanhr sech?y cosf}
= sech’r sech’y{[cos’§{sech?r — 2tanh’r}
+ sin?f(tanhr/r)]i + [sinf cosd{sech?r
— 2 tanh?r — (tanhr/r)}

— 2 cosf tanhr tanhylj}. (23)
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FIG. 5. Initial field of advection, with solid circle
at the radius of maximum winds.
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FIG. 6. Field of Q after the first time step (i.e., at ¢t = ¢,).
Solid circle is at radius of maximum winds.

where i and j are unit vectors in the x- and y-directions,
respectively. As with the Q-field, VQ at time ¢ = ¢,
can be found by saying that

VQ(X, y, t= tl)
~ VO(x, 3, t = to) + [8(VQ)/01]|— AL

A plot of |VQ)] at time ¢ = ¢, is'shown in Fig. 7.
Now, armed with the VQ-field at the advanced time,
the frontogenesis (Fig. 8) can be re-computed from
(5), as well as the local time change by advection (Fig.
9). Note the increase of frontogenesis, the decrease of
frontolysis, and the position shift of extrema in the
field of flow as seen in Fig. 8. Recall that frontogenesis
depends on |[VQ|—in a frontolytic situation, the pattern

(24)
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FI1G. 7. Field of Q-gradient magnitude at time ¢ = 1,,
with circle at radius of maximum winds.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 41, No. 7

v 1 eIt T r 1T r 1 v o1 1 r 1y oIt
: /”‘\
L /7 \
X \\ Voo
- AN 8
- \ \
e q ~\\
B \\f \
L aNN
» VAR
[ o0 N —
- o~ —
— N 3y ]
) \ 4
S0
[ H77 B -4 \\ \\ ]
X \ N
[ \ 1 ]
- '&7\_/'p N // T
>l S I S [N SN NS W U W T " 10 | D TN WD Y RN S N T S W | ]

FI1G. 8. As in Fig. 4, except at time ¢ = ¢,.

will be decreasingly frontolytic as the gradient de-
creases. Further, the peak in frontogenesis shifts with
time toward the radius of maximum deformation.
Observe in Fig. 8 that frontogenesis has become
positive outside the radius of maximum winds, below
the positive x-axis and above the negative x-axis, where
it had been negative initially. The equivalent effect
does not occur along the y-axis. Since this represents
a “propagation” of frontogenesis into the wind field,
it deserves explanation. If one examines the relationship
of the newly computed Q-field (Fig. 6) to the (time-
independent) axes of dilatation (Fig. 2), Q-isopleths
are seen to have been rotated by the vortex, to where
they are oriented at less than 45° with respect to the
axis of dilatation. Thus, frontogenesis has been created
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FIG. 9. As in Fig. 5, except at time ¢ = {,.
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by rotation in an indirect fashion, as mentioned at the
end of Section 2.

In Fig. 9, note that the strongest gradient of 3Q/dt
persists at the origin (as in Fig. 5). As suggested by
(19) and (22), the gradient should increase most rapidly
at the origin. Fig. 7 shows this to be the case. Once
again, if the dQ/dt of Fig. 9 is added to the new Q-
field of Fig. 6, the Q-field at time ¢ = ¢, = {, + 2At is
obtained, shown in Fig. 10.

In principle, this process can be continued indefi-
nitely. However, applying a V-operator to the results
of (24) would obviously result in an exceedingly com-
plex expression. This rapidly increasing complexity is
a direct result of the nonlinearity of the advection Eq.
(17). The solutions obtained are spatially exact, but
the time-stepping process [(20) and (24)] is only an
approximation. This involves, among other things, an-
other “linearity” assumption, concerned with the time
derivative (as opposed to the linearity of a differential
equation or of the spatial derivative). Since the dif-
ference in the field of Q over two “unit” time steps is
rather large (compare Fig. 2 with Fig. 10), the validity
of the time linearity assumption is suspect. Neverthe-
less, the fields’ evolution as shown is certainly in agree-
ment with intuition, so the problems with the time
derivative approximation are probably not too serious
during these early stages.

4. Discussion of results

Perhaps the most important point to be emphasized
from all this analytic verification of intuition is that
vorticity has important direct and indirect effects on
JSfrontogenesis. This in spite of its not appearing in the
conventional expression for frontogenesis (5). Vortic-
ity’s direct effects are through its implicit deformations,
in turn resulting from its spatial variations, as discussed

T T T T T

L&(

a4 gt

N

(

SN S S T S B UUD S SR S Y 8 ¢ TS T TS AN UK U T WO S s B |

FiG. 10. As in Fig. 6, except at time ¢ = ;.
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in Section 2. Note that the flow in this example is
nondivergent, but the concept has broader generality,
since only very restrictive types of associated divergence
fields could accompany a flow field with spatially-vary-
ing vorticity, but without deformation. Observe also
that one might just as well say that a spatially-varying
divergence field contains implicit deformations. The
emphasis on vorticity in this paper is motivated by its
non-appearance in the conventional definition for
frontogenesis (5). Intuitively, spatial differences in vor-
ticity result in different parts of the field experiencing
different “‘rotation rates,” causing stretching (defor-
mation) of the scalar field. An indirect effect of vorticity
on frontogenesis occurs when the pattern is rotated
from an unfavorable relationship with respect to de-
formation fields to a favorable one (or vice versa).

As an aside to these calculations, it can be seen (e.g.,
Fig. 10) that the resulting patterns have more than
passing resemblance to actual atmospheric frontal
zones in a vortex flow regime. The resemblance results
from purely kinematic relationships of the Q-field to
the flow field in a vortex, in spite of the very simple
model. Observe in Fig. 10 that the isopleths of Q are
coming into alignment everywhere with the axes of
dilatation. This has the effect of an inward spiralling
frontal pattern even when there is no convergence!

As suggested in Section 1, scale is not implied any-
where in this model. Thus, this deduction can be made:
when a vortex operates on a simple, initially one-di-
mensional frontal zone, the result will always look
something like Fig. 10 (perhaps modified by the in-
clusion of divergence). This may be a partial expla-
nation for the remarkable resemblance between an
extratropical cyclone and the storm-scale mesocyclone
in a supercell thunderstorm (Lemon and Doswell,
1979).

If these results were extended in time, the vortex
should wrap the frontal zone around itself many times.
As an example of this, consider Fig. 1 in Sykes and
Lewellen (1982)—compare Fig. 10 with their Fig. la.
Presumably, the behavior of the system shown here
with time results in a convolution of isopleths in the
vortex “core” and accompanying “braided” fronts (as
in their Fig. 1b). Another example can be seen in Kes-
sler’s (1969) Fig. 3.11, which should be compared with
Fig. 6 and Fig. 10. These examples represent dynamical
rather than purely kinematic processes. However, the
dynamics involved produce kinematic fields which
more than superficially resemble the model in this
study, and the behavior of scalar quantities in such a
flow is largely determined by those kinematic fields.
Clearly, dynamical models allow for feedbacks between
the scalar quantities and the flow which are not in-
cluded in a kinematic approach.

Since the model considered here is not viscous, the
process of convolution can go on indefinitely. Natu-
rally, the real atmosphere is more or less viscous, so
the strong gradients brought about by this deforma-
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FIG. 11. Visible satellite image of spiraling cloud pattern
in eastern Pacific.

tion—frontogenesis should result in locally enhanced
mixing, which eventually acts to wipe out these gra-
dients. If an atmospheric vortex is characterized by
relatively weak mixing, this convolution should be ap-
parent—see Fig. 11 as an example of what appears to
be such a system. Such tightly wound cloud spirals
are relatively rare and when they do occur, they are
almost always over oceans. One might suspect that
mixing may be less under conditions of strong static
stability and minimal surface friction (perhaps most
common over oceans, at least in the warm season),
thus enhancing the development of a convoluted cloud
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spiral in the vortex. One should also note that oceanic
cyclones are typically more intense, which might result
in greater spatial vorticity variations.
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