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Question 1.

e (a) Given two independent, unbiassed temperature observations 7; and T5
with (unknown) errors €; and €3, and (known) variances o7 and o3, derive an
expression for the best linear unbiassed estimate (BLUE) of the temperature.
State all assumptions you make.

e (b) Assuming 7} = 22°C, T, = 24°C, 07 = 1°C and o, = 3°C, find the
temperature that minimizes the least squares error, and also find its variance.

e (c¢) Show that the temperature that minimizes the cost function

(T—T1>2 (T—T2>2
+
g1 g9

yields the same estimate of 7" as the least squares estimate.

T =3

e (d) Briefly discuss the consequences of this equivalence in the context of opti-
mal interpolation (OI) analysis and variational assimilation.

Question 2.

In three-dimensional variational assimilation (3D-Var), we define the analysis to
be the state vector x, that minimizes the cost function

706) = 5{ (x = 30)TB 2 x = x0) + (30 = HO) R v~ H) |

where all symbols have their conventional meanings.

e (a) Derive an expression for the gradient of J with respect to the state vector
X.

e (b) Setting the gradient to zero, show that the 3D-Var analysis may be written
Xa = Xp + W[yo — H(xp)]
where the gain matriz W is given by
W =[B! +H'R'H] 'H'R™!
e (c) Show that W is equal to the gain matrix
Wor = BH'(R+HBH”)™!

that is obtained in optimal interpolation analysis.
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e (d) Outline the changes needed to convert 3D-Var to 4D-Var, that is, to as-
similate observations at their time of validity within a fixed time window.

Question 3.
Consider the advection equation, the partial differential equation (PDE)

oy oy

o T Cap U

e (a) Write a finite difference equation (FDE) approximation to this PDE using
the upstream method (you may assume that the advection speed c is positive).
Define “consistency” and “local truncation error” for a numerical scheme.
Show that the FDE is consistent with the PDE by deriving the local trun-
cation error.

e (b) State the von Neumann criterion for computational stability. Use the
von Neumann method to study the stability of the FDE and derive a condition
for the numerical stability of the upstream scheme.

e (c) Show that this condition is equivalent to the condition obtained using the
“criterion of the maximum”.

Question 4.

The one-dimensional advection equation may be written in either the Eulerian
form or the Lagrangian form:

oy oy
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e (a) Describe the procedure used to develop a finite difference approximation
to the Lagrangian form of the equation.

e (b) Assuming that linear spatial interpolation is used to evaluate the solu-
tion at the departure point, show that the semi-Lagrangian scheme is stable
irrespective of the time step.

e (c) Discuss the consequences of unrestricted stability for operational numerical
weather prediction. Does unconditional stability of the scheme enable an arbi-
trarily large time step to be used in practice, or are there other considerations
limiting it?
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Question 5.

e (a) Discuss the difficulties encountered when unbalanced initial data are used
to make a numerical forecast. Explain how the process of initialization allevi-
ates the difficulties.

e (b) Briefly describe each of the following methods of dealing with spurious
gravity-wave noise:

— Use of filtered equations
— Static initialization
— Dynamic initialization

— Variational initialization
e (c) Assume that the system of model equations is written in the form
X +4iLX + N(X) =0,

where X is the state vector, L is a matrix and N is a nonlinear vector function.
Show how this system can be written in normal mode form using the eigenvec-
tor matrix of L. Decribe the procedures of linear and nonlinear normal mode
initialization for this system.

Question 6.

e (a) Write the six-point Crank-Nicholson or centered implicit finite difference
equation (FDE) for the linear advection equation in one dimension.

e (b) Assuming that the FDE has a solution of the form
Y,y = Aexplik(mAz — CnAt)],

show that the physical phase speed ¢ and the computational phase speed C
are related by the equation

2 . cAt Y .
C = (m) tan [(m) Sin kA.’L':|

e (c) Interpret this relationship in terms of propogation of wave components
of the numerical solution and discuss its implications for the stability and
accuracy of forecasts using the scheme.
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