
UNIVERSITY COLLEGE DUBLIN

NATIONAL UNIVERSITY OF IRELAND, DUBLIN
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1. (a) Define what is meant by the characteristics of the linear advection equation for
u(x, t),

∂u

∂t
+ v(x, t)

∂u

∂x
= 0

where v(x, t) is a known function and show that u(x, t) is constant along such
characteristics. Derive the upwind scheme for the linear advection equation on
a rectangular grid on the (x, t) plane. Sketch the characteristics of the equation
ut + v(x)ux = 0 for 0 ≤ x ≤ 1 and v(x) = x − 1

2
. Explain why no boundary

conditions are needed. Using the characteristics, find the solution when u(x, 0) =
x(1− x).

(b) Construct the upwind scheme for the linear advection equation on a rectangular
grid. What is the truncation error of the upwind scheme ?

(c) Construct the upwind scheme for the inviscid Burger’s equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0

Verify that the solution to Burger’s equation with initial condition u(x, 0) = u0(x)
is given implicitly by u(x, t) = u0(x− u(x, t)t).

2. (a) The Von Neumann stability analysis for a finite difference scheme consists of
inserting the trial solution un

j = ξneik(jh) for the numerical value of u at the jth

spatial and nth temporal point, where k is the wavenumber, h the spatial stepsize
and ξ the amplitude factor. Describe why |ξ| < 1 is a necessary stability constraint
for a difference solution of the linear advection equation.

(b) Construct the forward-time, centred-space (FTCS) method for the linear advec-
tion equation and show that is is unconditionally unstable. Modify that method
to give the Lax technique and show that the amplification factor is given by

ξ = cos(kh)− i
vτ

h
sin(kh)

where τ is the timestep. Use this result to define the Courant-Friedrichs-Lewy
(CFL) stability constraint and numerical damping of the solution.

(c) Construct the leapfrog scheme for the linear advection equation and show that
there is no damping when the CFL condition is satisfied.

3. (a) An approximation to the two-dimensional linear advective equation is given in
standard notation by

∂u

∂t
= −cx

ui+1,j − ui−1,j

2∆x
− cy

ui,j+1 − ui,j−1

2∆y

where x = i∆x, y = j∆y and cx, cy are the constant components of the advective
velocity. If a leapfrog time differencing scheme is employed with timestep ∆t show
that we obtain the stability criterion

√
2
c∆t

d
≤ 1
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where cx = cy = c/
√

2 and ∆x = ∆y = d. How does this differ from the one-
dimensional case?

(b) The linearised shallow-water equations with rotation, for velocities u, v and height
h independent of y, are approximated on the Arakawa C grid by

∂u

∂t
= −gδxh+ fvx

∂v

∂t
= −fux

∂h

∂t
= −Hδxu

where H is the mean depth, with the difference and smoothing operators

(δxa)i,j =
1

d

(
ai+ 1

2
,j − ai− 1

2
,j

)
(ax)i,j =

1

2

(
ai+ 1

2
,j + ai− 1

2
,j

)
Derive the dispersion relationship(

ω

f

)2

= cos2 kd

2
+ 4

(
gH

f 2d2

)
sin2 kd

2

for waves of frequency ω and wavenumber k.

4. (a) A dynamic forecast model based on the barotropic vorticity equation requires the
solution of the Poisson equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζ

for the stream function ψ, given the vorticity ζ.

Show that ∂2ψ/∂x2 can be approximated to O(∆x2) by the finite difference

ψi+1,j − 2ψi,j + ψi−1,j

∆x2

where ψi,j = ψ(i∆x, j∆y) for a mesh of size ∆x,∆y.

Assume a domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and a square mesh of size 1/4. Set up
the matrix equation satisfied by a finite-difference approximation for ψ(x, y). You
should assume that ψ is zero on the boundary of the domain.

(b) Construct the Jacobi algorithm for the iterative solution of the matrix equation

Ax = b

Show how the algorithm is modified to give the Gauss-Seidel method.
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(c) Carry out four iterations of the Gauss-Seidel method for the system of equations

4x1 − x2 − x3 = 1

−x1 + 4x2 − x4 = 2

−x1 + 4x3 − x4 = 0

−x2 − x3 + 4x4 = 1

Use (x1, x2, x3, x4) = (0, 0, 0, 0) as the initial estimate.

5. (a) Two sets of independent measurements T1, T2 are taken to determine the scalar
T .

i. Outline the least squares method to determine the estimate Ta = a1T1 +
a2T2. Hence, find the weights a1, a2 in terms of the variances σ2

1, σ
2
2 of the

measurements. Show that the precision of the analysis is the sum of the
precision of the measurements.

ii. The likelihood of a true value T given an observation To with a standard
deviation σo is given by

Lσo(T ||To) = pσo(To|T ) =
1√

2πσo

e
−(To−T )2

2σ2
o

Show that the maximum likelihood value of T is given by the minimum of
the cost function

J(T ) =
1

2

[
(T − T1)

2

σ2
1

+
(T − T2)

2

σ2
2

]
(b) Provide a brief commentary on the 6-hour analysis cycle as illustrated below.

Include a description of the successive correction method of analysis.

Operational Forecasts
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6. (a) Consider the 1D advection equation dψ/dt = 0, where d/dt is the material deriva-
tive, for the case of a constant wind u (assume u > 0). The integral of this equation
along the trajectory of a particle that arrives at the gridpoint xI(= I∆x) at time
(n+ 1)∆t, having departed from the point x∗ at time n∆t, is given by

ψn+1
I = ψn

∗ (1)

Write down the semi-Lagrangian integration scheme based on (1) that uses quad-
ratic interpolation of the gridpoint values of ψ from the three grid points nearest
to x∗ (the central point of the three being chosen as the point to which x∗ lies
closest). Show that for such a scheme the amplification factor for the Fourier
component of wavenumber k is

Ak =
[
1− α̂2(1− cos k∆x)− iα̂ sin k∆x

]
exp(−ipk∆x) (2)

where α = u∆t/∆x, p is the closest integer to α, and α̂ = α− p.

(b) Using (2), show that the scheme in question is unconditionally stable.

(c) Discuss the implications of the semi-Lagrangian approach for NWP.

7. (a) Consider a climate model consisting of a single isothermal atmospheric layer of
temperature TA which is transparent to solar radiation and of emissivity εA for
longwave radiation, overlying a surface which is of emissivity 1 for longwave ra-
diation. Let S be the mean solar radiation absorbed by the surface per unit area
and let H be the turbulent surface flux per unit area (positive upwards).

Show that the model’s equilibrium climate is characterized by

ES =
S −H/2

1− εA/2

where ES is the surface longwave emission.

(b) Calculate the planetary emission temperature (Te), the surface temperature (TS)
and the atmospheric temperature (TA) for the above model when S = 240 Wm−2,
H = 0 and εA = 0.9.

(c) What value of H is required to reduce the surface temperature to the observed
value of 288K? What is the atmospheric temperature in this case?

(d) Using the definition of the greenhouse effect G in terms of temperatures, what is
the value of G in (b) and (c) above?

Note: The Stefan-Boltzmann constant σ is given by 5.67× 10−8 Wm−2K−4.
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