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Question 1. (a) Describe the Chapman reactions which are responsible for maintaining
steady-state concentrations of O3 in the stratosphere.

(b) Describe the four critical stages in the formation of the “ozone hole” over the
Antarctic in the Austral Spring. Identify the key factors which are involved in this
phenomenon.

(c) Why does the phenonemon of major ozone depletion occur primarily in the Southern
hemisphere and why in the Springtime?

Question 2. A cloud is cylindrical in shape and has a cross-sectional area of 10 km2 and a
height of 3 km. All of the cloud is initially supercooled and the liquid water content
is 2 gm−3. If all of the water in the cloud is transferred onto ice nuclei present in a
uniform concentration of 1 per liter, determine the total number of ice crystals in the
cloud and the mass of each ice crystal produced. If all the ice crystals precipitate and
melt before they reach the ground, what will be the total rainfall produced?

Question 3. Consider a “collector drop” of radius r1 with a terminal fall speed v1, falling
in still air through a cloud of equal sized droplets of radius r2 with terminal fall speed
v2 � v1. The rate of increase in the mass M of the collector drop due to collisions
may be shown to be

dM

dt
= πr2

1(v1 − v2)w`Ec

where w` is the LWC (in kgm−3) of the cloud droplets of radius r2 and Ec is the
collection efficiency.

(a) Show that the increase in the radius of the collector drop is governed by an equation
of the form

dr1

dt
= Kv1

where K is constant.

(b) Assuming, following from Stokes’ Drag Law, that v1 is proportional to the square
of the radius r1, derive an expression for r1 as a function of time and show that the
solution diverges to infinity in a finite time.

(c) Explain the consequences of this result for the formation of rain drops by the process
of growth by collection.
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Question 4. Assume that the geopotential field Φ is described by the function

Φ = Φ0(p) + cf0

{
−y[1 + cos(πp/p0)] + (1/k) sin k(x− ct)

}
where Φ0 depends only on p, c is a constant speed, f0 is the (constant) Coriolis param-
eter, k the zonal wavenumber and p0 = 1000 hPa.

(a) Derive expressions for the geostrophic wind components and relative vorticity field.

(b) Obtain an expression for the advection of relative vorticity.

(c) Deduce the horizontal divergence field by means of the quasi-geostrophic vorticity
equation (assume β = 0).

(d) By integration of the continuity equation, obtain an expression for the vertical
velocity ω (assume ω(p0) = 0).

(e) Sketch the geopotential fields at 250 hPa and 750 hPa. Indicate the regions of
maximum divergence and convergence and of positive and negative vorticity advection.

Question 5. Two air masses, of uniform temperature T1 and T2, are moving with constant
velocity V1 and V2 respectively, parallel to the plane frontal surface separating them,
with no along-front variations.

(a) Show, assuming geostrophic flow and making the Boussinesq approximation, that
the angle of slope ε of the frontal surface is given by

tan ε =
fT̄

g

V1 − V2

T1 − T2

where T̄ = (T1 + T2)/2. State any further approximations or assumptions that you
make.

(b) Calculate the frontal slope assuming that the mean temperature is T̄ = 280 K, the
Coriolis parameter f = 10−4 s−1, g = 10 m s−2, the difference in windspeed across the
front is ∆V = 12 m s−1 and the difference in temperature is ∆T = 4 K.

(c) Sketch the pressure pattern associated with this flow configuration and describe
how it is modified by superposition of a constant drift perpendicular to the front. How
is this used in synoptic analysis.
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Question 6. As cold, continental air passes over a warm ocean on a winter day, the tem-
perature rises by 10◦C over a distance of 300 km. Within this interval, the mean mixed
layer depth is 1 km and the average wind speed is 10m s−1. Assuming that no conden-
sation is taking place within the lowest km and that the radiative fluxes are negligible,
calculate the sensible heat flux from the sea surface. [You may assume that the mean
density of the 1 km column is 1.2 kgm−3 and take cp = 1004 J kg−1K−1.]

Question 7. (a) Starting from the geopotential tendency equation[
∇2 +

∂

∂p

(
f 2

0

σ

∂

∂p

)]
∂Φ

∂t
= −f0Vg·∇

(
1

f0

∇2Φ + f

)
+

∂

∂p

[
f 2

0

σ
Vg · ∇

(
−∂Φ

∂p

)]

derive the quasi-geostrophic potential vorticity (QGPV) equation(
∂

∂t
+ Vg·∇

)[
1

f0

∇2Φ + f +
∂

∂p

(
f0

σ

∂Φ

∂p

)]
= 0

(b) Show that, for barotropic flow, this reduces to the equation

dg

dt
(ζg + f) = 0 .

(c) Describe in qualitative terms how this barotropic equation may be used to predict
the evolution of atmospheric flows in midlatitudes. Outline the main steps in the
numerical solution of the equation.
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