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Question 1.
(a) Define circulation and (3D) vorticity in an absolute frame of reference.
(b) For a fluid governed by the inviscid 3D momentum equation in an absolute
frame, i.e.,
DU lo =
—4-4 - Vp-Vod (1.1
Dt P
where — VO is the gravitational force and the remaining notation is
conventional, show that the total derivative of the absolute circulation
satisfies the following relationship

D.C
et = P (1.2)
Dt Jo,
(c) Show that if the fluid is barotropic eq. (1.2) reduces to
D C
= 1.3
Or (1.3)

(Kelvin’s circulation theorem).

Question 2.
(a) Explain the difference between a body force and a surface force acting on a
particle of fluid and mention an example of each. Also, explain the difference

between a real (or true) force and an apparent (or fictitious) force and mention an
example of each.

(b) The total derivative of an arbitrary vector A in an inertial frame (Da;l / Dt) is
related to that in a rotating frame (DA/ Dr) by the expression

DA_DA 5,7 2.1
Dt Dt

where Q is the rotation vector. Using this expression, show that Newton’s second
law of motion in the rotating frame can be written

DU .o -

7);-=ZF,,—2Q><U+QZR (2.2)
where U is the velocity, Zﬁ, is the sum of the real forces per unit mass and R

is the position vector from the axis of rotation (perpendicular to the axis) to the
point in question.

(¢) Resolve the 3D Coriolis force — 2Qx U into its components in the directions of
the unit vectors (7, /, k) (notation conventional). Hence, show that the sum of the
3D Coriolis force and the horizontal pressure gradient force is exactly zero if
U lies in the meridional direction, V , p lies in the zonal direction and the

meridional wind component v equals its geostrophic value, vy [Note that no
scaling of eq. (2.2) is necessary to achieve this result.]




Question 3.

(2)

Assuming horizontal motion on a tangent plane to the Earth, show that in natural
coordinates the acceleration D¥ /Dt can be written
e 2
D7 _pvi 1 &
Dt Dt R

where 7 is the horizontal velocity vector, (7 , #) are unit vectors with 7 in the
direction of the flow and 7 normal to 7 and oriented to the left of the flow
direction, and R is the radius of curvature (positive when the centre of curvature is

in the positive # direction).

(b) Write down the horizontal momentum equation in vector form for frictionless

(©)

horizontal flow on an f-plane, using the isobaric vertical coordinate system. Using
(3.1), express this equation in its components in natural coordinates.

Hint: the horizontal pressure gradient force in the isobaric coordinate system is
~V @, where @ is the geopotential.

What is cyclostrophic flow? Using the 7 -component of the momentum equation
in natural coordinates derived above, find an expression for the cyclostrophic
wind speed. Is the flow direction cyclonic or anticyclonic? Supposing a tornado
has a tangential velocity of 40 ms at a distance of 250m from the centre of the
vortex, show that the condition for cyclostrophic flow is satisfied. (Confine
attention to the Northern Hemisphere and take f=1 0“st)

Question 4.

a)

b)

State the assumptions used in constructing the shallow water model with a free
surface of height hr(x,y,t), bottom topography hy(x,y) and fluid depth h(x,y,t) on a
B-plane.

Starting from the primitive equations of motion on a p-plane and using the above
assumptions, show that the governing equations for the model in question are

Du 0D,

e o= r 4.1
Dv oD,
o —fu— 5 (4.2)
Dn_ —h(@{ + Qz) (4.3)
Dt ox 0Oy

where @1 = ghr.
Derive the linearized form of the above equations for small perturbations about a
state of rest for the case where hy= 0 and p = 0. Hence show the existence of 1D
gravity-inertia wave solutions with phase speed
2 1/2
= fO
c = gH +—;2_ (44)

where H is the mean depth of the fluid and k is the wavenumber in x.




If H=1km, for what value of the wavelength are the gravity and inertia terms in
(4.4) equal? (Take g =9.81ms?and f,= 10™s™.)

Question 5.
a) The potential vorticity equation for the shallow water model with a free surface
and a flat bottom on an f-plane can be written in conventional notation as

2':&[9_} =0 (5.1
Dt @ '

Show that the linearized version of (5.1) for small perturbations about a state
of rest can be written

a ' fO Ty
—a;(g EQJ)—O (5.2)
b) At an initial time t=0 the free surface height of the above shallow water model
is given by
h=H+h,,x<0 (5.3)
h=H-hy,x>0 (5.4)

and the initial velocity is zero everywhere. Using (5.2) show that the equations
determining the free surface height perturbations at t=co, when the system has
adjusted to geostrophic balance, are

d2 ' 1 !

-c;);-z“(]’l -]’IO)ZF(}Z —]’IO), x <0 (55)
d? 1

dx (7 +hy) = (' +h,), x>0 (5.6)

where R = «/?g/fo.
(c) Solve (5.5) and (5.6) subject to the appropriate boundary conditions to obtain
the free surface height at t=co.

Question 6.

(a) The quasi-geostrophic potential vorticity equation for frictionless adiabatic
flow in z' [= - H In(p/ps)] coordinates on a B-plane (f= fy +By) can be written

(%H?g qu:o (6.1)
where
g=Vy+fr2 (fipo a‘”j (62)
p, &2\ N? 7oz

In the above, v is the geostrophic streamfunction, V* is the horizontal Laplacian,
I7g =k x Vi, N is the buoyancy frequency and py is the reference density, given

by



po = p,exp(-z / H) (6.3)
with psand H both constants.
Show that the linearized form of (6.1) for a small perturbation about a
constant mean wind # can be written

o _0), oy’
—+u— g +pf——=0 6.4
(81’ ! 6x)q P Ox ©4)
where
o L B[R oy
=V +—— = - 6.5
g =Vy pOaZ(N_pan] (6.5)

Hint: assume y = -y +y'(x, v,z ,1).

(b) Consider the case of a perturbation forced by the mean wind blowing over
topography of the form

h=h_coslye™ (6.6)

Assuming N is constant, show that a steady-state solution to (6.4) that is
oscillatory solution in z' (and can therefore propagate wave energy vertically)
is possible only if the mean wind # lies between zero and an upper limit U
given by

U, = P ] (6.7)
(k> 1)+ ——
RH
where Ly (=NH/fp) is the Rossby radius of deformation.

Hint: Assume the solution has the form
w'=¥(z")exp(z /2H)cosly e™ (6.8)

Note: you are not required to make explicit use of (6.6) to find the full
solution satisfying the lower boundary condition here. The form of the
topography is given only to indicate why the topographically forced solution
should have the x and y-dependence given in (6.8).

(c) Find the value of U, if the B-plane is tangent to the Earth at 45° latitude, Lr =

1000 km, / = 0 and the x-wavelength is that corresponding to zonal
wavenumber 1 at the latitude of tangency. (2 =7.29 x 10”5, a=6370 km.)
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