

Introduction to Meteorology & Climate

MAPH 10050

Peter Lynch

Meteorology & Climate Centre School of Mathematical Sciences University College Dublin

Introduction to Meteorology & Climate

HEAT AND TEMPERATURE

- Heat is the energy produced by the random motions of molecules and atoms.
- Specific heat amount of heat required to raise the temperature of one gram of a substance by one degree centigrade.
- Temperature Celsius, Fahrenheit and Kelvin scales.

Introduction to Meteorology & Climate

ENERGY and POWER energy is measured in Joules or calories f Joule = 0.24 calories f calorie = 4.18 Joules energy is the rate at which work is done. It is measured in Watts f Watt = 1 Joule per second.

TABLE 2.1 The specific heat of a substance is the amount of heat required to increase the temperature of 1 gram of the substance 1° C

Specific Heat		
(cal/g/°C)	(J/kg/°C)	
1.0	4186	
0.50	2093	
0.24	1005	
0.19	795	
	Table 2-1, p. 3	
Introduction to Meteorology & Climate	æ	
	Specific He (cal/g/°C) 1.0 0.50 0.24 0.19 Introduction to Meteorology & Climate	

CONDUCTIONTransfer of energy through matter Air is a poor conductor Only important at the Earth's surface **CONVECTION**Transfer of energy by movement of mass Can only take place in fluids - e.g. Air Energy transported upward by convective flow Convection on a global scale creates worldwide atmospheric circulation **ADVECTION**Horizontal movement of air RADIATION

LATENT HEAT – CHANGING THE PHASE OF WATER

 Latent heat is the heat absorbed or released by unit mass of water when it changes phase.

Introduction to Meteorology & Climate

Latent heat of melting / fusion

- Latent of vaporization / condensation
- Latent heat of sublimation / deposition

STEFAN-BOLTZMANN LAW

$$R = \sigma T^4 (W/m^2)$$
Energy radiated, as a function of temperature

Latitude/date	Solar zenith at local noon (degrees)	Daylight hours (hours and minutes)	Average incoming solar radiation (W/m ²)
70*			
March 21	70	12 hr	150
June 21	46.5	24 hr	494
December 21		0 hr	0
42*			
March 21	42	12 hr	326
June 21	18.6	15 h 18 m	485
December 21	65.4	8 h 57 m	143
30°			
March 21	30	12 hr	380
June 21	6.6	13 h 54 m	476
December 21	53.4	10 h 4 m	229
Equator			
March 21	0	12 hr	438
June 21	23.5	12 hr	387
December 21	23.5	12 hr	413

THE EARTH'S ORIENTATION

• In Belfield, solar zenith angle of the sun is 75° in December and 30° degrees in June.

Ratio of 1/cos of the angles is about 3.3.

Three times as much energy falls on unit

 Area covered by beam of sunlight is proportional to 1/cos of the solar zenith

angle

é cec

THE EARTH'S ORIENTATION

- Earth's axis is not perpendicular to the plane of its orbit around the sun.
- It is tilted 23.5° from the perpendicular: Inclination of the axis.
- Without this inclination we would have no seasons.
- This changes the solar zenith angle of the sun, and the area covered by a beam of sunlight.

Introduction to Meteorology & Climate

UCD

INCOMING SOLAR RADIATION

- 25% penetrates directly to earth's surface.
- 26% scattered by atmosphere but then reaches the surface.
- Total of 51% reaches surface.
- 31% reflected back to space by clouds, atmospheric scattering, and reflective surfaces, e.g. snow and ice.
- 19% absorbed by clouds and atmosphere

Introduction to Meteorology & Climate

Introduction to Meteorology & Climate

Fig. 2-19, p. 49

ABSORPTION

- Gases are excellent absorbers.
 - When radiation is absorbed, energy is converted into internal molecular motion – temperature rises.
 - Significant absorbers are: Oxygen and ozone Water vapour Carbon dioxide

Introduction to Meteorology & Climate

REFLECTION - ALBEDO S • The fraction of energy that is reflected by a surface is called its albedo. • • Albedo of the earth as a whole is ~30%. • • Albedo of fresh snow is 80-85%. • • Thick cloud - 70 to 80%. • • Water - depends on elevation of the Sun, from 50 to 80% near horizon, 3-5% at 90°. • Soil - 10% Mathematical Mathematical Substantiants

