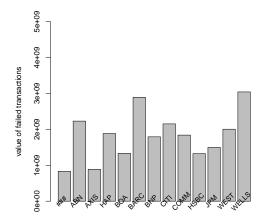
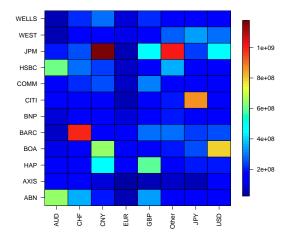
102nd European Study Group with Industry: Corlytics.

Team Members: James Sweeney, Damien McParland, Arthur White, Adrian O' Hagan, David O'Sullivan, Davide Cellai, Jan Idziak, Alessandro Montagnani

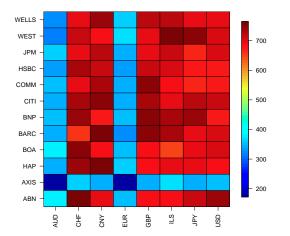

Data

- Summary Statistics.
- Clustering Results.
- Further Work: association rules, classification trees, logistic regression.

Data.

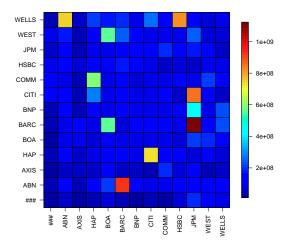

- Data provided for 59527 failed financial transactions on 15 consecutive days.
- Complete data available for 58640 of the transactions.
- Main variables of interest:
 - share price
 - share quantity
 - issuing bank
 - receiving bank
 - currency
 - failure value (price × quantity)
- Examined data for trends in transaction failures and combinations of high failure value intensity.

Bar Chart of Total Value of Failed Transactions by Bank

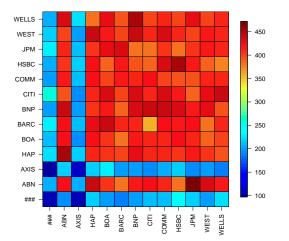


sender bank

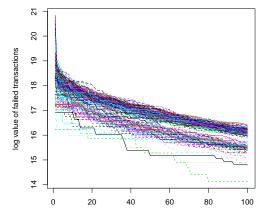
Heat Map of Bank to Currency by Failure Value Intensity



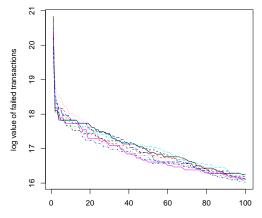
Heat Map of Bank to Currency by Number of Failures Intensity



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

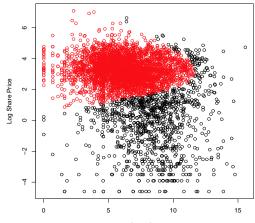

Heat Map of Bank to Bank by Failure Value Intensity

Heat Map of Bank to Bank by Number of Failures Intensity


Scree plot of total value of fail transactions versus percentile of fail values omitted by bank pairing

upper (percentile/10) of fail values omitted

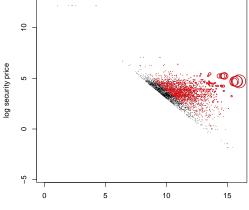
・ロト・西ト・ヨト・ヨト・ ヨー ろくの


Scree plot of total value of fail transactions versus percentile of fail values omitted: worst bank pairings

upper (percentile/10) of fail values omitted

・ロト・西ト・西ト・西ト・日・ション

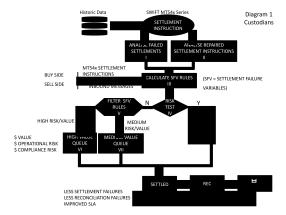
Mixture of 2 skew-normal distributions for log share price versus log share quantity



Log Share Quantity

(ロト・団ト・ヨト・ヨト・ 日) のへで

- The data is dominated by the extreme fail outcomes.
- From a total fail value across all 59527 transactions:
 - Over 30% due to the 67 most extreme fail transactions.
 - Over 50% due to the 172 most extreme fails.


Scatter plot of log share security price versus log quantity scaled by size of fail value

log quantity transacted

- Receive data for successful financial transactions on same days.
- Re-run previous analyses and compare results versus the failed transactions.
- Road map of potential strategies: 3 methods coded and applied to German Credit Data for demonstrative purposes.

The General Problem: Solutions Flowchart

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

German Credit Data.

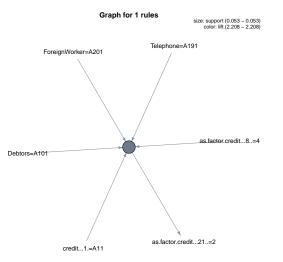
- Data for 1000 loan applications to a German Bank (available on the UCI clustering database).
 70% granted and 30% not granted.
- Each observation contains information for:

Loan Installment Rate Number of Debtors Type of Property Owned Other Loan Installment Plans Number of Existing Loans Maintenance Payments Status Foreign Worker Status Duration as Resident Purpose of Loan Savings Bonds Indicator Applicant Marital Status Duration of Loan Age Housing Status Job Telephone Code Checking Account Indicator Credit History Rating Amount Employment Status

イロト イポト イヨト イヨト

Loan Granted Indicator.

- There is also an associated cost matrix for predictions for loan granted indicator.
- Prediction of "loan granted" where not granted in data incurs 5 times the cost of prediction of "loan not granted" where granted in data.
- Zero cost for predicting "loan granted" and "loan not granted" where granted and not granted respectively.
- This is analogous to the "cost of failed transaction" and "fine for failed transaction" features of the Corlytics data.

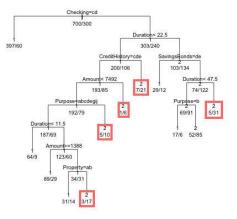

Potential Strategy 1: Association Rules

- Apply association rules for mixed fail/success transaction data to uncover relationships between the variables
- Include outcome of transaction (fail/success) as a variable.
 Ordering of variables within the transaction unimportant.
- Automated via the arules package in R.
- Continuous variables converted to binary form and factor variables retained at original number of levels.

Potential Strategy 1: Association Rules for German Credit Data

- Initial model, using all available variables, suggests over 10000 association rules.
- Model recalibrated using lift and confidence to sort rules, isolating optimal combinations.
- Rule with highest lift based on application fulfilling: checking account with negative balance quarterly installment rate no guarantors no telephone number foreign worker
- Lift 2.2: application 2.2 more times likely to fail if it obeys the specified rule.
- Probability of loan failing under the specified rule: 0.66.
 Applies to 53 customers in dataset.

Potential Strategy 1: Association Rules for German Credit Data



▲口▶▲圖▶▲臣▶▲臣▶ 臣 の名(?)

Potential Strategy 2: Classification Trees

- Data mining method. Predict value of target variable (transaction pass/fail) based on input variables cast as a series of nodes with finite stem outcomes.
- Greedy algorithm for top-down learning for the model.
- White-box: easy to understand in the context of the data versus commonly employed alternatives such as artificial neural networks.
- Robust, relatively fast to train for large data and can be validated using standard statistical tests.

Potential Strategy 2: Classification Trees for German Credit Data

▲口 > ▲ 圖 > ▲ 画 > ▲ 画 > ● ▲ ④ ▲ ④

Potential Strategy 3: Logistic Regression

• Letting *p* be the probability of a transaction failing:

 $\log(p/1 - p) = \alpha + \beta_1 * \log_{price} + \beta_2 * \log_{quantity}$

 $+\gamma_{iBank}+\gamma_{rBank}+\gamma_{iBank*rBank}+\dots$

- Maximum likelihood estimates of parameters from glm package in R or similar.
- Sensitivity analysis of threshold value p* such that a transaction should be flagged as a potential fail (not necessarily 0.5, potentially 0.05).
- Can use individual p values to infer expected fine cost for all transactions.

Potential Strategy 3: Logistic Regression applied to German Credit Data

- Training data: 600 randomly selected observations.
 Test data: the 400 remaining observations.
- Classification accuracy on test data for a model using all variables (without polynomial or interaction terms): 75%.
- Misclassification w.r.t. cost: 0.98, improvement from 1.242 from null model.