LEVELS AND SUBLEVELS OF QUATERNION ALGEBRAS

DETLEV W. HOFFMANN
Dedicated to Professor David W. Lewis on the occasion of his 65th birthday

Abstract

The level s (resp. sublevel \underline{s}) of a ring R with $1 \neq 0$ is the smallest positive integer such that -1 (resp. 0) can be written as a sum of s (resp. $\underline{s}+1$) nonzero squares in R, provided -1 (resp. 0) is a sum of nonzero squares at all. D.W. Lewis showed that any value of type 2^{n} or $2^{n}+1$ can be realized as level of a quaternion division algebra, and in all these examples, the sublevel was 2^{n}, which prompted the question whether or not the level and sublevel of a quaternion division algebra will always differ at most by one. In this note, we give a positive answer to that question.

1. Introduction

Let D be a division ring. The level $s(D)$ and the sublevel $\underline{s}(D)$ of D are defined as follows:
(1) If -1 is a sum of squares in D, then

$$
s(D)=\min \left\{n \mid \exists x_{1}, \ldots, x_{n} \in D:-1=x_{1}^{2}+\ldots+x_{n}^{2}\right\} .
$$

Otherwise, $s(D)=\infty$.
(2) If 0 is a sum of nonzero squares in D, then

$$
\underline{s}(D)=\min \left\{n \mid \exists x_{1}, \ldots, x_{n+1} \in D^{*}=D \backslash\{0\}: 0=x_{1}^{2}+\ldots+x_{n+1}^{2}\right\} .
$$

Otherwise, $\underline{s}(D)=\infty$.
It is clear from the definition that $\underline{s}(D) \leq s(D)$, and one readily sees that if D is a (commutative) field, the $s(D)=\underline{s}(D)$.

The study of level and sublevel of rings has a history dating back at least to the early 20th century. A famous result by Pfister [9] states that the level of a field, if finite, is always a 2 -power, and that each 2-power can be realized as level of a field. This answered a question posed by Van der Waerden in the 1930s.

The study of levels and sublevels in the above sense for noncommutative division rings started in the mid-1980s. In [5], [6], David Lewis showed that for every $k \in \mathbb{N}$, there exist quaternion division algebras with $s=\underline{s}=2^{k}$ and with $s=\underline{s}+1=2^{k}+1$, and that for any quaternion division algebra D with $s(D)=2^{k}$ one also has $\underline{s}(D)=$ 2^{k}. Leep [4] gave slight improvements on some of Lewis's results, and he asked the following questions (already implicit in [5], [6] and reiterated in [7]):

[^0]Question. (1) Can the level (resp. sublevel) of a quaternion division algebra D take values that are not of the form $2^{k}, 2^{k}+1$ (resp. 2^{k})?
(2) Does one always have $s(D) \leq \underline{s}(D)+1$?

As for the first question, quaternion division algebras of sublevel 3 were constructed by Krüskemper and Wadsworth [2]. It was shown in [1] that for each $k \geq 2$, there exist quaternion division algebras D with $2^{k}+2 \leq s(D) \leq 2^{k+1}-1$ (although the method used there to construct such D by employing function fields of quadrics does not allow to give the exact value for $s(D)$). O'Shea [8] observed that this function field method also allows to construct quaternion division algebras D of sublevel not of the form 2^{k} and >3. It is still not fully known what exact values can be realized as (sub)levels of quaternion division algebras.

In this note, we give a positive answer to the second question:
Theorem. Let D be a quaternion division algebra. Then $\underline{s}(D) \leq s(D) \leq \underline{s}(D)+1$.

2. Proof of the Theorem

We first recall a few simple facts about quaternion algebras. We refer to [3, chapter III] for any facts we use without further reference.

Let F be a field of characteristic different from 2 and let $D=(a, b)_{F}\left(a, b \in F^{*}\right)$ be the quaternion algebra with F-basis $\{1, i, j, k\}$ subject to the relations $i^{2}=a$, $j^{2}=b, i j=-j i=k$. We assume D to be a division algebra, which is equivalent to saying that its norm form $\langle 1,-a,-b, a b\rangle$ is anisotropic.

For $\zeta=x+y i+z j+w k \in D(x, y, z, w \in F)$, we call x the scalar part of ζ, and $\zeta^{\prime}=y i+z j+w k$ its pure part. We put $D^{\prime}=F i+F j+F k$, the subspace of pure quaternions. We have $\zeta^{2}=x^{2}+2 x \zeta^{\prime}+\zeta^{\prime 2}$ with $\zeta^{\prime 2}=a y^{2}+b z^{2}-a b w^{2} \in F$. The quadratic form $\langle a, b,-a b\rangle$ will be denoted by T_{P}. We immediately get the following well known lemma:

Lemma. $c \in F$ is a sum of m squares of pure quaternions in D (not all squares equal to 0 if $c=0$) if and only if the quadratic form

$$
m \times T_{P}=\underbrace{T_{P} \perp \ldots \perp T_{P}}_{m}
$$

represents c (nontrivially if $c=0$, i.e. $m \times T_{P}$ is isotropic in that case).
Proof of the Theorem. Let D be a quaternion division algebra as above and assume that $\underline{s}(D)=m$. We only have to show that $s(D) \leq m+1$. Let $\zeta_{\ell} \in D^{*}, 1 \leq \ell \leq$ $m+1$ be such that

$$
0=\zeta_{1}^{2}+\ldots+\zeta_{m+1}^{2}
$$

Write $\zeta_{\ell}=x_{\ell}+\zeta_{\ell}^{\prime}$ with $x_{\ell} \in F$ and $\zeta_{\ell}^{\prime} \in D^{\prime}$. We get

$$
0=\sum_{\ell=1}^{m+1} x_{\ell}^{2}+2 x_{\ell} \zeta_{\ell}^{\prime}+\zeta_{\ell}^{\prime 2}
$$

and thus

$$
\sum_{\ell=1}^{m+1} x_{\ell}^{2}+\zeta_{\ell}^{\prime 2}=0=\sum_{\ell=1}^{m+1} x_{\ell} \zeta_{\ell}^{\prime}
$$

1. case: All $x_{\ell}=0,1 \leq \ell \leq m+1$.

In this case, 0 is a nontrivial sum of squares of $m+1$ pure quaternions, so $(m+1) \times T_{P}$
is isotropic by the Lemma. But then $(m+1) \times T_{P}$ contains a hyperbolic plane $\langle 1,-1\rangle$ as subform, in particular, $(m+1) \times T_{P}$ represents -1 . Again by the Lemma, we have that -1 is a sum of squares of $m+1$ pure quaternions, hence $s(D) \leq m+1$.
2. case: $\sum_{\ell=1}^{m+1} x_{\ell}^{2}=0$ but not all $x_{\ell}=0$.

In this case, 0 is a nontrivial sum of $m+1$ squares already in F, and thus $s(D) \leq$ $s(F)=\underline{s}(F) \leq m$.
3. case: $\sum_{\ell=1}^{m+1} x_{\ell}^{2} \neq 0$.

Let

$$
c_{\ell}=\frac{x_{\ell}}{x_{1}^{2}+\cdots+x_{m+1}^{2}} .
$$

We then get

$$
\sum_{\ell=1}^{m+1} c_{\ell} \zeta_{\ell}=\frac{1}{x_{1}^{2}+\ldots+x_{m+1}^{2}}(\sum_{\ell=1}^{m+1} x_{\ell}^{2}+\underbrace{\sum_{\ell=1}^{m+1} x_{\ell} \zeta_{\ell}^{\prime}}_{=0})=1 .
$$

Put $c=c_{1}^{2}+\ldots+c_{m+1}^{2}=\left(x_{1}^{2}+\ldots+x_{m+1}^{2}\right)^{-1}$. This yields

$$
\begin{aligned}
\sum_{\ell=1}^{m+1}\left[\left(\frac{c+1}{2}\right) \zeta_{\ell}-c_{\ell}\right]^{2} & =\left(\frac{c+1}{2}\right)^{2} \underbrace{\sum_{\ell=1}^{m+1} \zeta_{\ell}^{2}}_{=0}-(c+1) \underbrace{\sum_{\ell=1}^{m+1} c_{\ell} \zeta_{\ell}}_{=1}+\underbrace{\sum_{\ell=1}^{m+1} c_{\ell}^{2}}_{=c} \\
& =-1,
\end{aligned}
$$

which shows that $s(D) \leq m+1$.
Remark. The above proof can be used more or less verbatim in the case of octonion division algebras (with the appropriate notions of pure octonion and of the form T_{P} corresponding to squares of pure octonions). So if \mathcal{O} is an octonion division algebra, one also gets that $\underline{s}(\mathcal{O}) \leq s(\mathcal{O}) \leq \underline{s}(\mathcal{O})+1$.

References

[1] D.W. Hoffmann, Levels of quaternion algebras, Arch. Math. (Basel) 90 (2008), 401-411.
[2] M. Krüskemper and A.R. Wadsworth, A quaternion algebra of sublevel 3, Bull. Soc. Math. Belg. Sér. B 43 (1991), 181-185.
[3] T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67, American Mathematical Society, Providence, RI, 2005.
[4] D.B. Leep, Levels of division algebras, Glasgow Math. J. 32 (1990), 365-370.
[5] D.W. Lewis, Levels and sublevels of division algebras, Proc. Roy. Irish Acad. Sect. A $\mathbf{8 7}$ (1987), 103-106.
[6] D.W. Lewis, Levels of quaternion algebras, Quadratic forms and real algebraic geometry (Corvallis, OR, 1986). Rocky Mountain J. Math. 19 (1989), 787-792.
[7] D.W. Lewis, Levels of fields and quaternion algebras-a survey, Théorie des nombres, Années 1996/97-1997/98, Publ. Math. UFR Sci. Tech. Besançon, Univ. Franche-Comté, Besançon, 1999, 9 pp.
[8] J. O'Shea, Bounds on the levels of composition algebras, Math. Proc. R. Ir. Acad. (to appear).
[9] A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Körper, J. London Math. Soc. 40 (1965), 159-165.

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK

E-mail address: detlev.hoffmann@nottingham.ac.uk

[^0]: The idea for this paper came during a conference at University College Dublin held on the occasion of the 65 th birthday of Professor David Lewis. The author thanks UCD and in particular Thomas Unger for their hospitality.

