Simple Mechanical Models & Complex Physical Systems

Peter Lynch UCD School of Mathematical Sciences

UCD/TCD Summer School in Mathematics 30 May — 3 June 2011

Springs & Triads

Rossby Wave Equation

Bank Notes

PHONIAC

Rock'n'roller

Quaternions

Discretizing the Sphere

Spring

٧E

Notes

PHONIAC

RnR

ł

Quaternions

Springs & Triads

Spring			

PVE

Notes

PHONIAC

RnR

0

Quaternions

Springs and Triads

In a Nutshell

A mathematical equivalence with a simple mechanical system sheds light on the dynamics of resonant Rossby waves in the atmosphere.

The Swinging Spring

Spring

Notes

PHONI/

RnR

rnions

Two distinct oscillatory modes with distinct restoring forces:

Elastic or 'springy' modes

Notes

Pendular or 'swingy' modes

Spring

VE

PHONIAC

AC

RnR

Quaternions

5

Two distinct oscillatory modes with distinct restoring forces:

- Elastic or 'springy' modes
- Pendular or 'swingy' modes

Take a peek at the Java Applet http://mathsci.ucd.ie/~plynch/

Spring

E

Notes

PHONIAC

RnR

2

Quaternions

In a paper in 1981, Breitenberger and Mueller made the following comment:

"This simple system looks like a toy at best, but its behaviour is astonishingly complex, with many facets of more than academic lustre."

I hope to convince you of the validity of this remark.

Spring

Notes

PHONIAC

RnR

Quaternions

Lagrange's Equations of Motion

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems are encapsulated in a simple function of the coordinates:

L = T - V = K.E. - P.E.

We now call *L* the Lagrangian.

Notes

Sphere

Spring

PHONIAC

Rr

RnR

Quaternions

ns

Lagrange's Equations of Motion

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems are encapsulated in a simple function of the coordinates:

L = T - V = K.E. - P.E.

We now call *L* the Lagrangian.

The Lagrange equations of motion may be written:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\boldsymbol{q}}_{\rho}} = \frac{\partial L}{\partial \boldsymbol{q}_{\rho}}$$

Spring

PHONIAC

RnR

Quaternions

The Exact Equations for the Spring In Cartesian coordinates the Lagrangian is $L = T - V = \underbrace{\frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{Z}^2)}_{\frac{1}{2}k(r - \ell_0)^2} - \underbrace{mgZ}_{\frac{1}{2}k(r - \ell_0)^2}$

K.E

Spring

Notes

PHONIAC

R

RnR

E.P.F

Quaternions

The Exact Equations for the Spring In Cartesian coordinates the Lagrangian is $L = T - V = \underbrace{\frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{Z}^2\right)}_{K E} - \underbrace{\frac{1}{2}k(r - \ell_0)^2}_{E.P.E} - \underbrace{\frac{mgZ}{G.P.E}}$

The equations of motion are (with $\omega_Z^2 \equiv k/m$):

$$\ddot{X} = -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) X$$

$$\ddot{y} = -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) y$$

$$\ddot{Z} = -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) Z - g$$

Spring

Notes

PHONIAC

RnR

Quaternions

The Exact Equations for the Spring In Cartesian coordinates the Lagrangian is $L = T - V = \underbrace{\frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{Z}^2\right)}_{K E} - \underbrace{\frac{1}{2}k(r - \ell_0)^2}_{E.P.E} - \underbrace{\frac{mgZ}{G.P.E}}$

The equations of motion are (with $\omega_Z^2 \equiv k/m$):

$$\begin{aligned} \ddot{x} &= -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) x \\ \ddot{y} &= -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) y \\ \ddot{Z} &= -\omega_Z^2 \left(\frac{r-\ell_0}{r}\right) Z - g \end{aligned}$$

Two constants, energy and angular momentum:

$$E = T + V$$
 $h = x\dot{y} - y\dot{x}$.

Spring

Notes

PHONIAC

RnR

2

Quaternions

Regular and Chaotic Motion

Two invariants, three DOF: The system is <u>not integrable.</u>

We consider the phenomenon of Resonance. For the spring, resonance occurs for

$$\omega_{Z}=2\omega_{R}\,,$$

Notes

Spring

PHONIAC

RnR

R

Quaternions

Regular and Chaotic Motion

Two invariants, three DOF: The system is <u>not integrable.</u>

PVF

Notes

Spring

We consider the phenomenon of Resonance. For the spring, resonance occurs for

$$\omega_Z = 2\omega_R, \qquad \epsilon = \frac{1}{2}.$$

For small amplitudes, the motion is quasi-integrable.

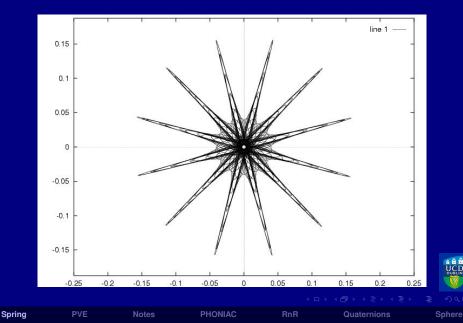
We look at two numerical solutions, one with small amplitude, one with large.

PHONIAC

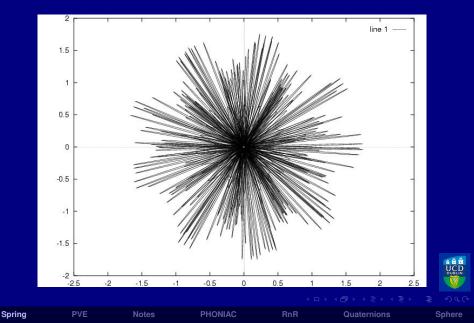
RnR

Quaternions

Horizontal plan: Low energy case



Horizontal plan: High energy case



The Resonant Case

The Lagrangian, to cubic order is:

$$L = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - \frac{1}{2} \left(\omega_R^2 (x^2 + y^2) + \omega_Z^2 z^2 \right) + \frac{1}{2} \lambda (x^2 + y^2) z \,,$$

We study the resonant case:

Notes

$$\omega_Z = 2\omega_R$$
 .

Spring

PVE

PHONIAC

RnR

Quaternions

The Resonant Case

The Lagrangian, to cubic order is:

$$L = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - \frac{1}{2} \left(\omega_R^2 (x^2 + y^2) + \omega_Z^2 z^2 \right) + \frac{1}{2} \lambda (x^2 + y^2) z \,,$$

We study the resonant case:

$$\omega_Z = 2\omega_R$$
 .

A, B and C are amplitudes in x, y and Z directions.

Spring

Notes

PHONIAC

RnR

3

Quaternions

Using the Averaged Lagrangian Technique, the equations for the modulation amplitudes are:

$$egin{array}{rll} \dot{A}&=&B^{*}C\,,\ \dot{B}&=&CA^{*}\,,\ \dot{C}&=&AB\,, \end{array}$$

These are the *three-wave interaction equations*.

PHONIAC

RnR

Quaternions

Notes

Spring

Ubiquity of Three-Wave Equations

- Modulation equations for wave interactions in fluids and plasmas.
- Three-wave equations govern envelop dynamics of light waves in an inhomogeneous material; and phonons in solids.
- Maxwell-Schrödinger envelop equations for radiation in a two-level resonant medium in a microwave cavity.
- Euler's equations for a freely rotating rigid body (when H = 0).

Spring

Notes

PHONIAC

R

RnR

Quaternions

Analytical Solution of 3-Wave Equations

We can derive complete analytical expressions for the amplitudes and phases.

The amplitudes are expressed as elliptic functions. The phases are expressed as elliptic integrals.

Sphere

Spring

Notes

RnR

Quaternions

Analytical Solution of 3-Wave Equations

We can derive complete analytical expressions for the amplitudes and phases.

The amplitudes are expressed as elliptic functions. The phases are expressed as elliptic integrals.

The complete details are given in:

Notes

Lynch, Peter, and Conor Houghton, 2004: Pulsation and Precession of the Resonant Swinging Spring. Physica D, 190,1-2, 38-62

(See http://www.maths.tcd.ie/~plynch)

Spring

PH

PHONIAC

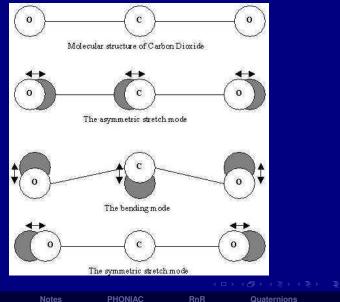
RnR

R

Quaternions

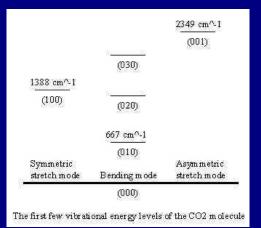
Vibrations of CO₂ Molecule

Spring



Sphere

**



$2\times 667 = 1\overline{334} \approx 1\overline{388}$

Stretching frequency pprox Twice bending frequency.

Spring

PVE

Notes

PHONIAC

RnR

Quaternions

Waves in the Atmosphere

C	n	гi	n	~

PVE

Notes

PHONIAC

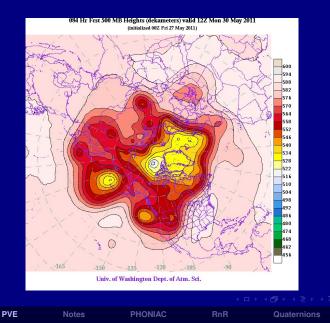
RnR

Quaternions

າຣ

500 hPa forecast for midday today

Spring



Potential Vorticity Conservation

From the *Shallow Water Equations*, we derive the principle of conservation of potential vorticity:

$$\frac{d}{dt}\left(\frac{\zeta+f}{h}\right)=0$$

where ζ is the relative vorticity, *f* is the planetary vorticity and *h* is the fluid depth.

Spring

Notes

PVF

PHONIAC

RnR

Quaternions

Potential Vorticity Conservation

From the *Shallow Water Equations*, we derive the principle of conservation of potential vorticity:

$$\frac{d}{dt}\left(\frac{\zeta+f}{h}\right)=0$$

where ζ is the relative vorticity, *f* is the planetary vorticity and *h* is the fluid depth.

Under the assumptions of quasi-geostrophic theory, the dynamics reduce to an equation for ψ alone:

$$\frac{\partial}{\partial t} [\nabla^2 \psi - F \psi] + \left\{ \frac{\partial \psi}{\partial x} \frac{\partial \nabla^2 \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \nabla^2 \psi}{\partial x} \right\} + \beta \frac{\partial \psi}{\partial x} = 0$$

This is the barotropic quasi-geostrophic potential vorticity equation, used to model weather systems.

Spring

Notes

PVF

PHONIAC

F

RnR

Quaternions

Rossby Waves

Wave-like solution of the vorticity equation:

$$\psi = A\cos(kx + \ell y - \sigma t)$$

satisfies the equation provided

$$\sigma = -\frac{k\beta}{k^2 + \ell^2 + F}.$$

This is the celebrated Rossby wave formula

Spring

Notes

PVF

PHONIAC

Ri

RnR

Quaternions

Rossby Waves

Wave-like solution of the vorticity equation:

$$\psi = A\cos(kx + \ell y - \sigma t)$$

satisfies the equation provided

$$\sigma = -\frac{k\beta}{k^2 + \ell^2 + F}.$$

This is the celebrated Rossby wave formula

With more than one wave, the components *interact with each other* through the nonlinear terms.

Spring

Notes

PVF

PHONIAC

R

RnR

Quaternions

Resonant Rossby Wave Triads

Case of special interest: Two wave components produce a third such that its interaction with each generates the other.

Spring

PVE

Notes

PHONIAC

RnR

Quaternions

Resonant Rossby Wave Triads

Case of special interest: Two wave components produce a third such that its interaction with each generates the other.

By a multiple time-scale analysis, we derive the *modulation equations* for the wave amplitudes:

 $i\dot{A} = B^*C$ $i\dot{B} = CA^*$ $i\dot{C} = AB$

[Canonical form of the three-wave equations].

Spring

Notes

PVF

PHONIAC

RnR

QL

Quaternions

The Spring Equations and the **Triad Equations are** are Mathematically Identical!

Spring

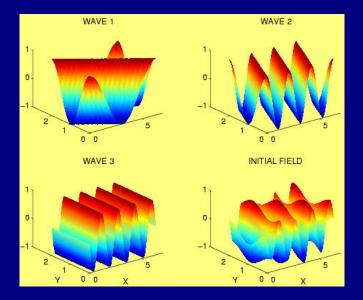
PVF

Notes

PHONIAC

RnR

Quaternions



Components of a resonant Rossby wave triad All fields are scaled to have unit amplitude.

Spring

Notes

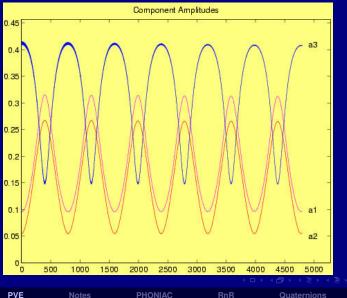
PVE

PHONIAC

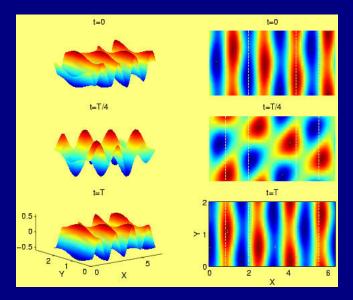
RnR

Quaternions

Variation with time of the amplitudes of three components of the stream function.



Spring



Stream function at three times during an integration of duration T = 4800 days.

Spring

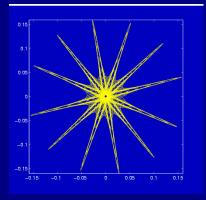
PVE

Notes

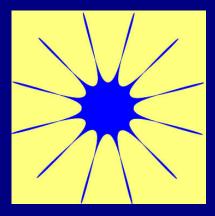
PHONIAC

RnR

Quaternions



PVE



Left: Horizontal projection of spring solution, y vs. x.

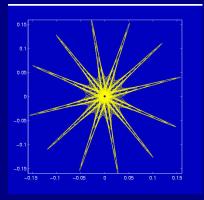
Notes

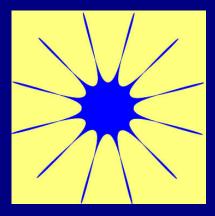
PHONIAC

Right: Polar plot of A_{maj} versus θ for resonant triad.

Quaternions

RnR





Left: Horizontal projection of spring solution, y vs. x.

Right: Polar plot of A_{maj} versus θ for resonant triad.

Review

I hope I have convinced you that:

This simple system looks like a toy at best, but its behaviour is astonishingly complex, with many facets of more than academic lustre ... (Breitenberger and Mueller, 1981)

... and that the Swinging Spring is a valuable model of some important aspects of atmospheric dynamics.

Spring

PHONIAC

R

RnR

Quaternions

Banknotes with Mathematicians

[Applied Mathematicians and Physicists]

Spring

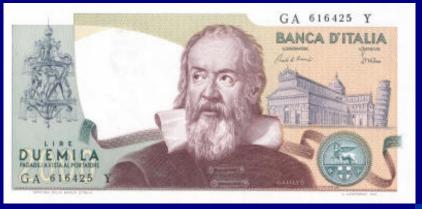
Notes

PHONIAC

RnR

Quaternions

Galileo Galilei



Notes

PHONIAC

RnR

Isaac Newton

Notes

RnR

Christiaan Huygens

Spring

PVE

Notes

PHONIAC

RnR

Quaternions

Leonard Euler

Spring

E

Notes

PHON

R

RnR

ions

Carl Friedrich Gauss

Notes

PHONIAC

RnR

Quaternions

Blaise Pascal

Spring

Notes

PHONIAC

RnR

R

Quaternions

Rene Descartes

Spring

Notes

PHONIAC

RnR

Q

ns

Benjamin Franklin

Spring

Notes

PHONIAC

RnR

R

Quaternions

Olivia Newton John

Spring

Notes

PHONIAC

RnR

Quaternions

Erwin Schrödinger

Spring

Notes

PHONIAC

RnR

Quaternions

Albert Einstein

Notes

RnR

ENIAC and PHONIAC

Spring

VE

Notes

PHONIAC

F

RnR

Quaternions

Charney, et al., Tellus, 1950.

 $\begin{bmatrix} Absolute \\ Vorticity \end{bmatrix} = \begin{bmatrix} Relative \\ Vorticity \end{bmatrix} + \begin{bmatrix} Planetary \\ Vorticity \end{bmatrix}$

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

$$\frac{d(\zeta+f)}{dt}=0.$$

Spring

Notes

PHONIAC

RnR

Q

Quaternions

 $\eta = \zeta + f.$

Charney, et al., Tellus, 1950.

 $\begin{bmatrix} Absolute \\ Vorticity \end{bmatrix} = \begin{bmatrix} Relative \\ Vorticity \end{bmatrix} + \begin{bmatrix} Planetary \\ Vorticity \end{bmatrix}$

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

Spring

$$\frac{d(\zeta+f)}{dt}=0.$$

This equation looks simple. But it is nonlinear:

PHONIAC

$$\frac{\partial}{\partial t} [\nabla^2 \psi] + \left\{ \frac{\partial \psi}{\partial x} \frac{\partial \nabla^2 \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \nabla^2 \psi}{\partial x} \right\} + \beta \frac{\partial \psi}{\partial x} = \mathbf{0},$$

 $\eta = \zeta + f$.

Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

A MATLAB program to solve the BVE Data from the NCEP/NCAR reanalysis

Spring

Notes

PHONIAC

RnR

Quaternions

Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

A MATLAB program to solve the BVE Data from the NCEP/NCAR reanalysis

> The matlab code is available on the author's website http://maths.ucd.ie/~plynch/eniac

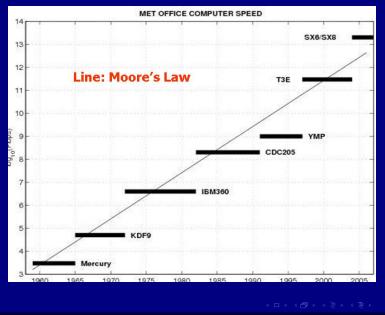
Spring

Notes

PHONIAC

RnR

Quaternions



Spring

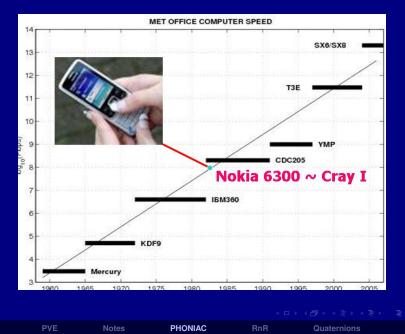
Notes

PHONIAC

F

RnR

rnions



Sphere

n n n UCD

Spring

Forecasts by PHONIAC

Peter Lynch & Owen Lynch

Spring

E

Notes

PHONIAC

RnR

Quaternions

Forecasts by PHONIAC

Peter Lynch & Owen Lynch

A modern hand-held mobile phone has far greater power than the ENIAC had.

We therefore decided to repeat the ENIAC integrations using a programmable mobile phone.

Spring

VE

Notes

PHONIAC

F

RnR

Quaternions

Forecasts by PHONIAC

Peter Lynch & Owen Lynch

A modern hand-held mobile phone has far greater power than the ENIAC had.

We therefore decided to repeat the ENIAC integrations using a programmable mobile phone.

We converted the program ENIAC.M to PHONIAC.JAR, a J2ME application, and implemented it on a mobile phone.

This technology has great potential for generation and delivery of operational weather forecast products.

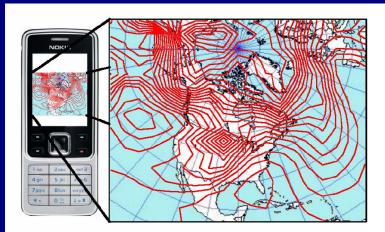
Spring

PHONIAC

RnR

Quaternions

PHONIAC: Portable Hand Operated Numerical Integrator and Computer



Spring

Notes

PHONIAC

RnR

Quaternions

Weather, November 2008

Forecasts by PHONIAC

Peter Lynch¹ and Owen Lynch²

¹University College Dublin, Meteorology and Climate Centre, Dublin ²Dublin Software Laboratory, IBM Ireland

The first computer weather forecasts were made in 1950, using the ENIAC (Electronic Numerical Integrator and Computer). The ENIAC forecasts led to operational numerical weather prediction within five years, and payed the way for the remarkable advances. in weather prediction and climate modelling that have been made over the past half century. The basis for the forecasts was the barotropic vorticity equation (BVE). In the present study, we describe the solution of the BVE on a mobile phone (cell-phone). and repeat one of the ENIAC forecasts. We speculate on the possible applications of mobile phones for micro-scale numerical weather prediction.

The ENIAC Integrations

and John von Neumann (1950: cited below as CFvN). The story of this work was recounted by George Platzman in his Victor P. Starr Memorial Lecture (Platzman, 1979). The atmosphere was treated as a single laver. represented by conditions at the 500 hPa level, modelled by the BVF. This equation. expressing the conservation of absolute vorticity following the flow, gives the rate of change of the Laplacian of height in terms of the advection. The tendency of the height field is obtained by solving a Poisson equation with homogeneous boundary conditions. The height field may then be advanced to the next time level. With a one hour time-step, this cycle is repeated 24 times for a one-day forecast.

The initial data for the forecasts were prepared manually from standard operational 500 hPa analysis charts of the U.S. Weather Bureau, discretised to a grid of 19 by 16 points with grid interval of 736 km. Centred spatial finite differences and a leapfrog timescheme were used. The boundary conditions for height were held constant throughout each 24-hour integration. The forecast starting at 0300 urc. January 5, 1949 is shown in

vorticity. The forecast height and vorticity are shown in the right panel. The feature of primary interest was an intense depression over the United States. This deepened, moving NE to the 90 W meridian in 24 hours. A discussion of this forecast, which underestimated the development of the depression, may be found in CEVN and in Lynch (2008).

Dramatic growth in computing power

The off-cited paper in Tellus (CFvN) gives a complete account of the computational algorithm and discusses four forecast cases. The ENIAC, which had been completed in 1945, was the first programmable electronic digital computer ever built. It was a gigantic machine with 18,000 thermionic valves filling a large room and consuming 140 kW of power. Input and output was by means of punch-cards. McCartney (1999) provides an absorbing account of the origins, design, development and destiny of ENIAC.

Advances in computer technology over the past half-century have been spectacular. The increase in computing power is encap-

Quaternions

Spring

Notes

PHONIAC

RnR

A Challenge to you all ...

Spring

PVE

Notes

PHONIAC

RnR

nR

Quaternions

A Challenge to you all ...

Run an NWP model on a Smart Phone

Spring

PVE

Notes

PHONIAC

RnR

Quaternions

A Challenge to you all ...

Run an NWP model on a Smart Phone

There are many more possibilities for these devices.

PV

Spring

Notes

PHONIAC

RnR

Quaternions

s

The Rock'n'roller

Sprina			

PVE

Notes

PHONIAC

RnR

Quaternions

Sphe

A Bowling-ball from Stillorgan

Thanks to Brian O'Connor (School of Physics) for slicing the top off

Spring

Notes

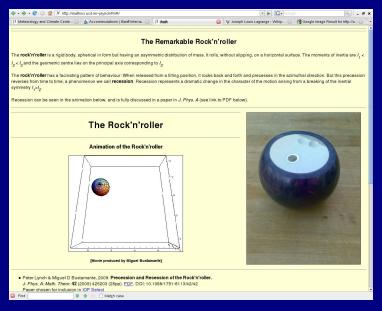
PHONIAC

RnR

R

Quaternions

Recession I: see website



オロト オ部ト オミト オミト 三日 めんの

The Physical System

Consider a spherical rigid body with an asymmetric mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the tippe-top, which has been studied extensively.

Unit radius and unit mass.

Notes

Spring

Centre of mass off-set a distance *a* from the centre.

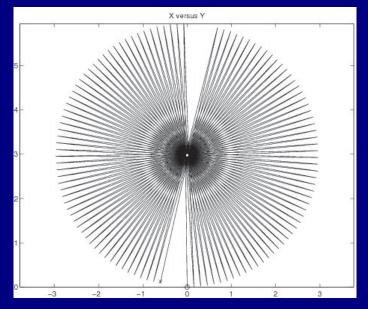
PHONIAC

RnR

Quaternions

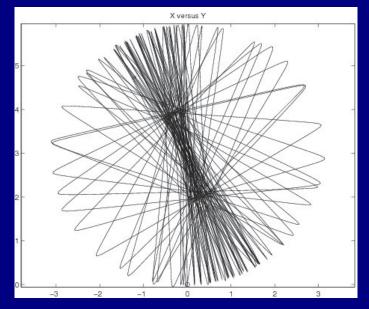
Moments of inertia I_1 , I_2 and I_3 , with $I_1 \approx I_2 < I_3$.

Symmetric Case: Routh Sphere $(I_1 = I_2)$



▲ロト ▲翻ト ▲ヨト ▲ヨト 三目 - 釣A@

Asymmetric Case: Rock'n'roller ($I_1 < I_2$)



<ロト < 母 > < 臣 > < 臣 > 三 の < ()</p>

The Lagrangian of the system is easily written down:

 $L = \frac{1}{2}(\mathbf{I}_{1}\omega_{1}^{2} + \mathbf{I}_{2}\omega_{2}^{2} + \mathbf{I}_{3}\omega_{3}^{2}) + \frac{1}{2}(\dot{X}^{2} + \dot{Y}^{2} + \dot{Z}^{2}) - ga(1 - \cos\theta)$

The equations may then be written (in vector form):

$$\mathbf{\Sigma} \dot{oldsymbol{ heta}} = oldsymbol{\omega}\,, \qquad \mathbf{K} \dot{oldsymbol{\omega}} = \mathbf{P}_{oldsymbol{\omega}}$$

where the matrices Σ and K are known and

$$\mathbf{P}_{\boldsymbol{\omega}} = \begin{pmatrix} -(g + \omega_1^2 + \omega_2^2) \mathbf{a} \mathbf{s} \chi + (\mathbf{l}_2 - \mathbf{l}_3 - \mathbf{a} f) \omega_2 \omega_3 \\ (g + \omega_1^2 + \omega_2^2) \mathbf{a} \mathbf{s} \sigma + (\mathbf{l}_3 - \mathbf{l}_1 + \mathbf{a} f) \omega_1 \omega_3 \\ (\mathbf{l}_1 - \mathbf{l}_2) \omega_1 \omega_2 + \mathbf{a} \mathbf{s} (-\chi \omega_1 + \sigma \omega_2) \omega_3 \end{pmatrix}$$

Note that neither K nor P_{ω} depends explicitly on ϕ .

Spring

Notes

PHONIAC

۱C

RnR

C

Quaternions

Nonholonomic Constraints

Assume nonholonomic constraints

 $g_k(q_
ho,\dot{q}_
ho)=0$.

When the constraints are linear in the velocities, we can write the equations as:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} + \sum_k \mu_k \frac{\partial g_k}{\partial \dot{q}_i} = 0.$$

For the Rock'n'roller, we have one holonomic constraint and two nonholonomic constraints.

Spring

Notes

RnR

Quaternions

The enigma of nonholonomic constraints

M. R. Flannery^{a)} School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 16 February 2004; accepted 8 October 2004)

The problems associated with the modification of Hamilton's principle to cover nonholonomic constraints by the application of the multiplier theorem of variational calculus are discussed. The reason for the problems is subtle and is discussed, together with the reason why the proper account of nonholonomic constraints is outside the scope of Hamilton's variational principle. However, linear velocity constraints remain within the scope of D'Alembert's principle. A careful and comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic constraints. © 2005 American Association of Physics Teachers. [DOI: 10.1119/1.1830501]

Am. J. Phys., Vol 73, 265-272 (2005)

Constants of Motion for Routh Sphere

The total energy is conserved:

 $K = \frac{1}{2} [u^2 + v^2 + w^2] + \frac{1}{2} [\mathbf{I}_1 \omega_1^2 + \mathbf{I}_2 \omega_2^2 + \mathbf{I}_3 \omega_3^2] + mga(1 - \cos \theta).$

Jellett's constant is the scalar product:

$$C_J = \mathbf{L} \cdot \mathbf{r} = \mathbf{I}_1 \mathbf{s} (\sigma \omega_1 + \chi \omega_2) + \mathbf{I}_3 f \omega_3 = \text{constant}.$$

where $f = \cos \theta - a$, $\sigma = \sin \psi$ and $\chi = \cos \psi$. Stephen O'Brien & John L Synge first gave this interpretation

Routh's constant (difficult to interpret physically):

$$C_R = \left[\sqrt{\mathbf{I_3} + s^2 + (\mathbf{I_3}/\mathbf{I_1})f^2}\right]\omega_3 = \text{constant}.$$

Spring

Notes

PHONIAC

RnR

Quaternions

Edward J Routh

John H Jellett

1831-1907

1817-1888

◆□ ▶ ◆母 ▶ ∢ 臣 ▶ ◆臣 ▶ ○ 臣 ○ � � �

Journal of Physics A: Mathematical and Theoretical

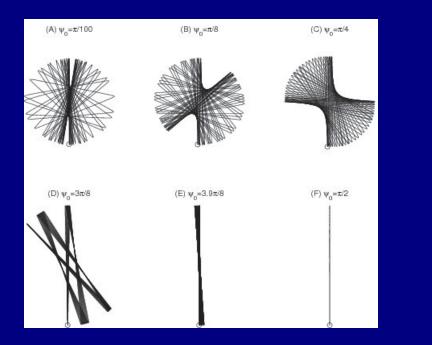
Home Search Collections Journals About Contact us My IOPscience

Precession and recession of the rock'n'roller

IOPSELECT							
Author	Peter Lynch and Miguel D Bustamante						
Affiliations	School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland						
E-mail	Peter.Lynch@ucd.ie Miguel.Bustamante@ucd.ie						
Journal	Journal of Physics A: Mathematical and Theoretical Create an alert RSS this journal						
Issue	Volume 42, Number 42						
Citation	Peter Lynch and Miguel D Bustamante 2009 <i>J. Phys. A: Math. Theor.</i> 42 425203 doi: 10.1088/1751-8113/42/42/425203						
Article	References						
0.1	Tag this article						
Abstract	We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect						

distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre symmetric case, with moments of inertia $l_1 = l_2 < l_3$, is integrable and the motion is completely regular.

of grat



Orbit of stars in a Globular Cluster

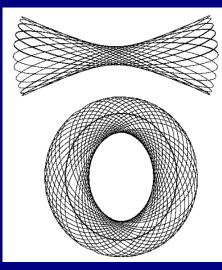


Figure 3.8 Two orbits of a common energy in the potential $\Phi_{\rm L}$ of equation (3.103) when $v_0 = 1$, q = 0.9 and $R_c = 0.14$: top, a box orbit; bottom, a loop orbit. The closed parent of the loop orbit is also shown. The energy, E = -0.337, is that of the isopotential surface that cuts the long axis at $x = 5R_c$.

A Globular Cluster (m22)

Spring

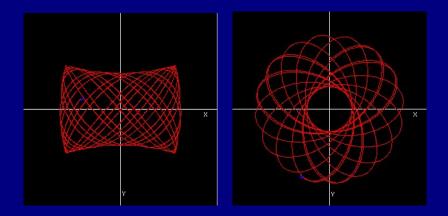
Notes

PHONIA

RnR

G

ions



Box orbit (left) and loop orbit (right)

Notes

RnR

Quaternions

Quaternionic Formulation

The Euler angles have a singularity when $\theta = 0$ The angles ϕ and ψ are not uniquely defined there.

We can obviate this problem by using Euler's symmetric parameters

$$\begin{split} \gamma &= \cos \frac{1}{2}\theta \cos \frac{1}{2}(\phi + \psi) & \xi &= \sin \frac{1}{2}\theta \cos \frac{1}{2}(\phi - \psi) \\ \zeta &= \cos \frac{1}{2}\theta \sin \frac{1}{2}(\phi + \psi) & \eta &= \sin \frac{1}{2}\theta \sin \frac{1}{2}(\phi - \psi) \end{split}$$

There are the components of a unit quaternion

$$\mathbf{q} = \gamma + \xi \mathbf{i} + \eta \mathbf{j} + \zeta \mathbf{k}$$

$$\gamma^2 + \xi^2 + \eta^2 + \zeta^2 = 1$$

Spring

Notes

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2} = j^{2} = k^{2} = ijk = -1$ & cut it on a stone of this bridge

Expressions for the angular rates of change:

$$\dot{\theta} = \frac{(\xi\dot{\xi} + \eta\dot{\eta}) - (\gamma\dot{\gamma} + \zeta\dot{\zeta})}{\sqrt{(\xi^2 + \eta^2)(\gamma^2 + \zeta^2)}}$$
$$\dot{\phi} = \left(\frac{\gamma\dot{\zeta} - \zeta\dot{\gamma}}{\gamma^2 + \zeta^2}\right) + \left(\frac{\xi\dot{\eta} - \eta\dot{\xi}}{\xi^2 + \eta^2}\right)$$
$$\dot{\phi} = \left(\frac{\gamma\dot{\zeta} - \zeta\dot{\gamma}}{\gamma^2 + \zeta^2}\right) - \left(\frac{\xi\dot{\eta} - \eta\dot{\xi}}{\xi^2 + \eta^2}\right)$$

The components of angular velocity are

Spring

Notes

PHONIAC

RnR

Quaternions

The first-order (small θ) equations may be written

$$\begin{aligned} \ddot{\gamma} + \left(\frac{\omega_3}{2}\right)^2 \gamma &= \mathbf{0} \\ \ddot{\zeta} + \left(\frac{\omega_3}{2}\right)^2 \zeta &= \mathbf{0} \\ \ddot{\xi} + \kappa_{21}\omega_3\dot{\eta} + \Omega_1^2 \xi &+ \epsilon' \zeta \left\{ (1-\kappa)\omega_3(\gamma\dot{\xi} + \zeta\dot{\eta}) + \Omega_{11}^2(\gamma\eta - \zeta\xi) \right\} = \mathbf{0} \\ \ddot{\eta} - \kappa_{21}\omega_3\dot{\xi} + \Omega_1^2 \eta &- \epsilon' \gamma \left\{ (1-\kappa)\omega_3(\gamma\dot{\xi} + \zeta\dot{\eta}) + \Omega_{11}^2(\gamma\eta - \zeta\xi) \right\} = \mathbf{0} \end{aligned}$$

where ϵ' is related to the asymmetry $(I_2 - I_1)/I_1$.

By a simple rotation of coordinates, they can be transformed to a system with constant coefficients.

PHONIAC

RnR

Quaternions

Thus, the complete solution can be obtained.

Notes

Spring

Competition

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
$$i^2 = j^2 = k^2 = ijk = -1$$

& cut it on a stone of this bridge



$$i^2 = j^2 = k^2 = ijk = -1$$

Spring

Notes

PHONIAC

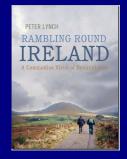
RnR

Quaternions

Competition

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
$$i^2 = j^2 = k^2 = ijk = -1$$

& cut it on a stone of this bridge



(1) Find [ij-ji]. (2) Find 1/[ij-ji]. (3) Find i/j.

You have two minutes !

Spring

Notes

PHONIAC

RnR

(

Quaternions

$$i^2 = j^2 = k^2 = ijk = -1$$

VE

PHON

RnR

Quaternions

$$i^2 = j^2 = k^2 = ijk = -1$$

$$i(ijk) = (ii)jk = -jk = -i$$
, **So** $jk = i$

E

PHONI

R

Quaternions

$$i^{2} = j^{2} = k^{2} = ijk = -1$$
$$i(ijk) = (ii)jk = -jk = -i, \quad \text{So} \quad jk = i$$
$$ij = k \qquad jk = i \qquad ki = j$$

PHONIA

Rn

Quaternions

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$i(ijk) = (ii)jk = -jk = -i, \quad So \quad jk = i$$

$$ij = k \qquad jk = i \qquad ki = j$$
Similarly
$$ii = -k \qquad ki = -i \qquad ik = -i$$

1

PHONIA

Rnl

G

Quaternions

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$i(ijk) = (ii)jk = -jk = -i, \text{ So } jk = i$$

$$ij = k \quad jk = i \quad ki = j$$
Similarly
$$ji = -k \quad kj = -i \quad ik = -j$$

$$(1) \quad [ij - ji] = k - (-k) = 2k$$

E

PHON

F

RnR

Quaternions

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$i(ijk) = (ii)jk = -jk = -i, \text{ So } jk = i$$

$$ij = k \quad jk = i \quad ki = j$$
Similarly
$$ji = -k \quad kj = -i \quad ik = -j$$

$$(1) \quad [ij - ji] = k - (-k) = 2k$$

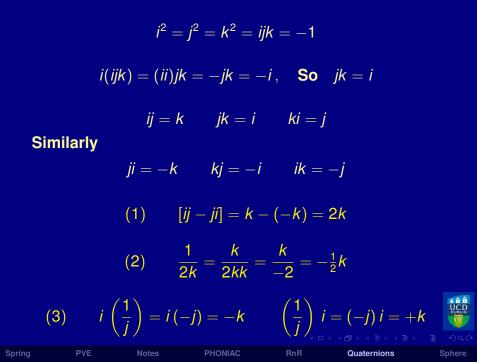
$$(2) \quad \frac{1}{2k} = \frac{k}{2kk} = \frac{k}{-2} = -\frac{1}{2}k$$

PHONIA

F

RnR

Quaternions



Discretizing the Sphere

c	n	ri	~
ວ	μ		 y

VE

Notes

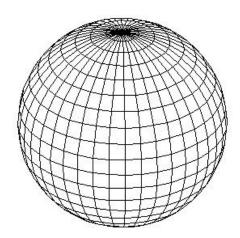
PHONIAC

F

RnR

Quaternions

ns



Regular Latitude-Longitude Grid

ng

PVE

PHON

RnR

ernions

Challenge: Find a uniform distribution of points thousands of them — on a sphere.

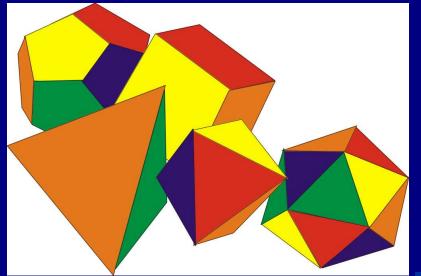
Spring

Notes

PHONIAC

RnR

Quaternions



The Five Platonic Solids

Spring

PVE

PHONIA

RnR

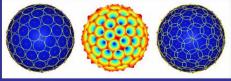
R

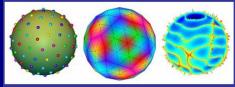
ons

Distributing points on the sphere

Convex hull, Voronoi cells and Delaunay triangulation

Covering and packing with spherical caps





Notes

Interpolatory cubature, cubature weights and determinants

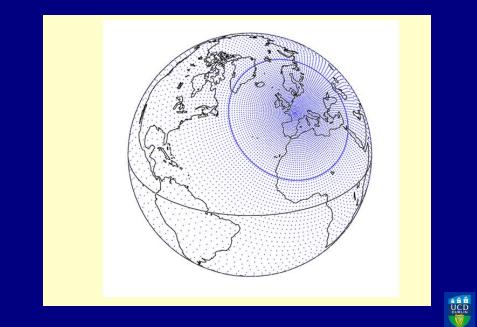
Sphere

Spring

PHONIAC

RnR

Quaternions



Conformal Stretched Grid

pring

PVE

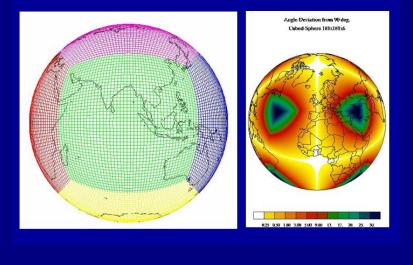
PHONIA

RnF

3

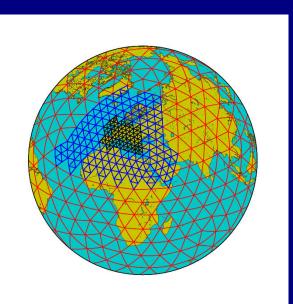
iions

The Cubed Sphere



Notes

RnR



Triangulated Icosahedral Grid

pring

PVE

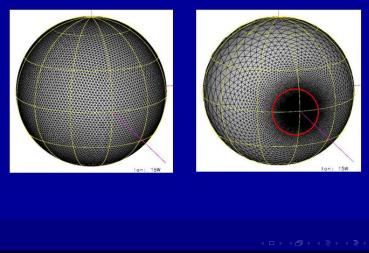
PHONIA

Rn

nR

ions

Stretched Icosahedral Grid



Spring

Notes

PHONIAC

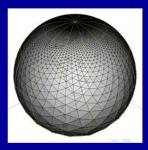
Rr

RnR

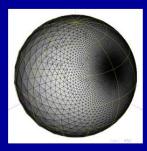
Quaternions

To make a stretched grid

- Gather the grid points in the north pole region (left figure)
- Rotate the grid system to the interested region (right figure)



Notes



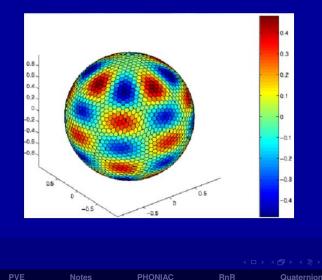
Spring

PHONIAC

RnR

Quaternions

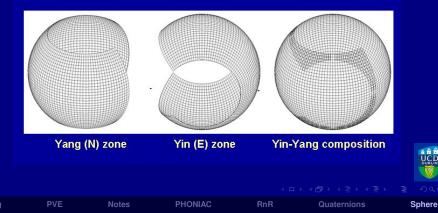
Penta-Hexagonal Grid



RnR

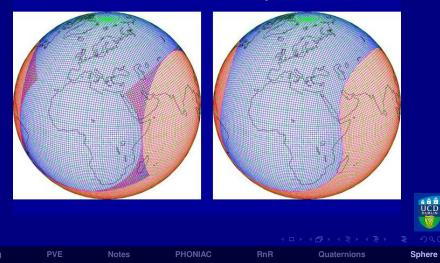
Quaternions

Yin-Yang grid



Rectangles, minimal overlap

Overlaps trimmed to median



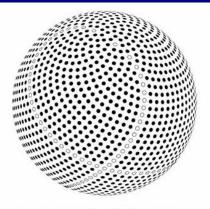


Figure 2. A spherical Fibonacci grid, at resolution N = 1000 (2001 grid points). As in Fig. 1, the spiral structure is highlighted by marking every 34th and 55th grid point.

The ultimate grid remains elusive.

This is your big chance of fame.

Spring

PVF

Notes

PHONIAC

RnR

Quaternions