Simple Mechanical Models

 \& Complex Physical SystemsPeter Lynch
UCD School of Mathematical Sciences

UCD/TCD Summer School in Mathematics 30 May - 3 June 2011

Springs \& Triads

Rossby Wave Equation

Bank Notes

PHONIAC
Rock'n'roller
Quaternions
Discretizing the Sphere

Springs \& Triads

Springs and Triads

In a Nutshell

A mathematical equivalence with a simple mechanical system sheds light on the dynamics of resonant Rossby waves
in the atmosphere.

The Swinging Spring

Two distinct oscillatory modes with distinct restoring forces:

- Elastic or 'springy' modes
> Pendular or 'swingy' modes

Two distinct oscillatory modes with distinct restoring forces:

- Elastic or 'springy' modes
> Pendular or 'swingy' modes

Take a peek at the Java Applet http://mathsci.ucd.ie/~plynch/

In a paper in 1981, Breitenberger and Mueller made the following comment:
"This simple system looks like a toy at best, but its behaviour is astonishingly complex, with many facets of more than academic lustre."

I hope to convince you of the validity of this remark.

Lagrange's Equations of Motion

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems are encapsulated in a simple function of the coordinates:

$$
L=T-V=\text { K.E. - P.E. }
$$

We now call L the Lagrangian.

Lagrange's Equations of Motion

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems are encapsulated in a simple function of the coordinates:

$$
L=T-V=\text { K.E. }- \text { P.E. }
$$

We now call L the Lagrangian.
The Lagrange equations of motion may be written:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{\rho}}=\frac{\partial L}{\partial q_{\rho}}
$$

The Exact Equations for the Spring

In Cartesian coordinates the Lagrangian is

$$
L=T-V=\underbrace{\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{Z}^{2}\right)}_{K . E}-\underbrace{\frac{1}{2} k\left(r-\ell_{0}\right)^{2}}_{\text {E.P.E }}-\underbrace{m g Z}_{\text {G.P.E }}
$$

The Exact Equations for the Spring

In Cartesian coordinates the Lagrangian is

$$
L=T-V=\underbrace{\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{Z}^{2}\right)}_{K . E}-\underbrace{\frac{1}{2} k\left(r-\ell_{0}\right)^{2}}_{\text {E.P.E }}-\underbrace{m g Z}_{\text {G.P.E }}
$$

The equations of motion are (with $\omega_{Z}^{2} \equiv k / m$):

$$
\begin{aligned}
& \ddot{x}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) x \\
& \ddot{y}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) y \\
& \ddot{z}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) Z-g
\end{aligned}
$$

The Exact Equations for the Spring

In Cartesian coordinates the Lagrangian is

$$
L=T-V=\underbrace{\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{Z}^{2}\right)}_{K . E}-\underbrace{\frac{1}{2} k\left(r-\ell_{0}\right)^{2}}_{\text {E.P.E }}-\underbrace{m g Z}_{\text {G.P.E }}
$$

The equations of motion are (with $\omega_{Z}^{2} \equiv k / m$):

$$
\begin{aligned}
& \ddot{x}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) x \\
& \ddot{y}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) y \\
& \ddot{z}=-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) Z-g
\end{aligned}
$$

Two constants, energy and angular momentum:

$$
E=T+V \quad h=x \dot{y}-y \dot{x} .
$$

Regular and Chaotic Motion

Two invariants, three DOF:
The system is not integrable.
We consider the phenomenon of Resonance.
For the spring, resonance occurs for

$$
\omega_{z}=2 \omega_{R}, \quad \epsilon=\frac{1}{2}
$$

Regular and Chaotic Motion

Two invariants, three DOF:
The system is not integrable.
We consider the phenomenon of Resonance.
For the spring, resonance occurs for

$$
\omega_{z}=2 \omega_{R}, \quad \epsilon=\frac{1}{2}
$$

For small amplitudes, the motion is quasi-integrable.
We look at two numerical solutions, one with small amplitude, one with large.

Horizontal plan: Low energy case

Horizontal plan: High energy case

The Resonant Case

The Lagrangian, to cubic order is:
$L=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{1}{2}\left(\omega_{R}^{2}\left(x^{2}+y^{2}\right)+\omega_{Z}^{2} z^{2}\right)+\frac{1}{2} \lambda\left(x^{2}+y^{2}\right) z$,

We study the resonant case:

$$
\omega_{z}=2 \omega_{R}
$$

The Resonant Case

The Lagrangian, to cubic order is:
$L=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{1}{2}\left(\omega_{R}^{2}\left(x^{2}+y^{2}\right)+\omega_{Z}^{2} z^{2}\right)+\frac{1}{2} \lambda\left(x^{2}+y^{2}\right) z$,

We study the resonant case:

$$
\omega_{Z}=2 \omega_{R}
$$

A, B and C are amplitudes in x, y and Z directions.

Using the Averaged Lagrangian Technique, the

 equations for the modulation amplitudes are:$$
\begin{aligned}
& i \dot{A}=B^{*} C, \\
& i \dot{B}=C A^{*}, \\
& i \dot{C}=A B,
\end{aligned}
$$

These are the three-wave interaction equations.

Ubiquity of Three-Wave Equations

- Modulation equations for wave interactions in fluids and plasmas.
- Three-wave equations govern envelop dynamics of light waves in an inhomogeneous material; and phonons in solids.
- Maxwell-Schrödinger envelop equations for radiation in a two-level resonant medium in a microwave cavity.
- Euler's equations for a freely rotating rigid body (when $H=0$).

Analytical Solution of 3-Wave Equations

We can derive complete analytical expressions for the amplitudes and phases.

The amplitudes are expressed as elliptic functions. The phases are expressed as elliptic integrals.

Analytical Solution of 3-Wave Equations

We can derive complete analytical expressions for the amplitudes and phases.

The amplitudes are expressed as elliptic functions. The phases are expressed as elliptic integrals.

The complete details are given in:
Lynch, Peter, and Conor Houghton, 2004: Pulsation and Precession of the Resonant Swinging Spring. Physica D, 190,1-2, 38-62
(See http://www.maths.tcd.ie/~plynch)

Vibrations of CO_{2} Molecule

Molecular structure of Carbon Dioxide

The asymmetric stretch mode

The bending mode

The first few vibrational ener gy levels of the CO 2 m olecule

$$
2 \times 667=1334 \approx 1388
$$

Stretching frequency \approx Twice bending frequency.

Waves in the Atmosphere

500 hPa forecast for midday today

084 Hr Fcst 500 MB Heghts (dekameters) valid 12 Z Mon 30 May 2011
(initialized 00 Z Fri 27 May 2011)

Univ, of Washington Dept. of Atm. Sci.

Potential Vorticity Conservation

From the Shallow Water Equations, we derive the principle of conservation of potential vorticity:

$$
\frac{d}{d t}\left(\frac{\zeta+f}{h}\right)=0
$$

where ζ is the relative vorticity, f is the planetary vorticity and h is the fluid depth.

Potential Vorticity Conservation

From the Shallow Water Equations, we derive the principle of conservation of potential vorticity:

$$
\frac{d}{d t}\left(\frac{\zeta+f}{h}\right)=0
$$

where ζ is the relative vorticity, f is the planetary vorticity and h is the fluid depth.

Under the assumptions of quasi-geostrophic theory, the dynamics reduce to an equation for ψ alone:

$$
\frac{\partial}{\partial t}\left[\nabla^{2} \psi-F \psi\right]+\left\{\frac{\partial \psi}{\partial x} \frac{\partial \nabla^{2} \psi}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \nabla^{2} \psi}{\partial x}\right\}+\beta \frac{\partial \psi}{\partial x}=0
$$

This is the barotropic quasi-geostrophic potential vorticity equation, used to model weather systems.

Rossby Waves

Wave-like solution of the vorticity equation:

$$
\psi=A \cos (k x+\ell y-\sigma t)
$$

satisfies the equation provided

$$
\sigma=-\frac{k \beta}{k^{2}+\ell^{2}+F}
$$

This is the celebrated Rossby wave formula

Rossby Waves

Wave-like solution of the vorticity equation:

$$
\psi=A \cos (k x+\ell y-\sigma t)
$$

satisfies the equation provided

$$
\sigma=-\frac{k \beta}{k^{2}+\ell^{2}+F}
$$

This is the celebrated Rossby wave formula
With more than one wave, the components interact with each other through the nonlinear terms.

Resonant Rossby Wave Triads

Case of special interest: Two wave components produce a third such that its interaction with each generates the other.

Resonant Rossby Wave Triads

Case of special interest: Two wave components produce a third such that its interaction with each generates the other.

By a multiple time-scale analysis, we derive the modulation equations for the wave amplitudes:

$$
\begin{aligned}
i \dot{A} & =B^{*} C \\
i \dot{B} & =C A^{*} \\
i \dot{C} & =A B
\end{aligned}
$$

[Canonical form of the three-wave equations].

The Spring Equations and the

 Triad Equations are are Mathematically Identical!

WAVE 3

INITIAL FIELD

Components of a resonant Rossby wave triad All fields are scaled to have unit amplitude.

Variation with time of the amplitudes of three components of the stream function.

PVE

Stream function at three times during an integration of duration $T=4800$ days.

Left: Horizontal projection of spring solution, y vs. x.

Right: Polar plot of $A_{\text {maj }}$ versus θ for resonant triad.

Left: Horizontal projection of spring solution, y vs. x.

Right: Polar plot of $A_{\text {maj }}$ versus θ for resonant triad.

Take another peek at the Applet!

Review

I hope I have convinced you that:

This simple system looks like a toy at best, but its behaviour is astonishingly complex, with many facets of more than academic lustre ...
(Breitenberger and Mueller, 1981)
... and that the Swinging Spring is a valuable model of some important aspects of atmospheric dynamics.

Banknotes with Mathematicians

[Applied Mathematicians and Physicists]

Galileo Galilei

\square

ㄹ

Isaac Newton

${ }^{64}$
 UCD v

Christiaan Huygens

UCD v

Leonard Euler

Carl Friedrich Gauss

부붑
UCD

를

Blaise Pascal

Rene Descartes

Benjamin Franklin

Olivia Newton John

Erwin Schrödinger

플

Albert Einstein

ENIAC and PHONIAC

Charney, et al., Tellus, 1950.

$\left[\begin{array}{c}\text { Absolute } \\ \text { Vorticity }\end{array}\right]=\left[\begin{array}{c}\text { Relative } \\ \text { Vorticity }\end{array}\right]+\left[\begin{array}{c}\text { Planetary } \\ \text { Vorticity }\end{array}\right] \quad \eta=\zeta+f$.

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

$$
\frac{d(\zeta+f)}{d t}=0
$$

Charney, et al., Tellus, 1950.

$\left[\begin{array}{c}\text { Absolute } \\ \text { Vorticity }\end{array}\right]=\left[\begin{array}{c}\text { Relative } \\ \text { Vorticity }\end{array}\right]+\left[\begin{array}{c}\text { Planetary } \\ \text { Vorticity }\end{array}\right] \quad \eta=\zeta+f$.

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

$$
\frac{d(\zeta+f)}{d t}=0
$$

This equation looks simple. But it is nonlinear:

$$
\frac{\partial}{\partial t}\left[\nabla^{2} \psi\right]+\left\{\frac{\partial \psi}{\partial x} \frac{\partial \nabla^{2} \psi}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \nabla^{2} \psi}{\partial x}\right\}+\beta \frac{\partial \psi}{\partial x}=0
$$

Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

- A MATLAB program to solve the BVE
- Data from the NCEP/NCAR reanalysis

Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

- A MATLAB program to solve the BVE
- Data from the NCEP/NCAR reanalysis

The matlab code is available on the author's website http://maths.ucd.ie/~plynch/eniac

MET OFFICE COMPUTER SPEED

MET OFFICE COMPUTER SPEED

\square

Forecasts by PHONIAC

Peter Lynch \& Owen Lynch

Forecasts by PHONIAC

Peter Lynch \& Owen Lynch

A modern hand-held mobile phone has far greater power than the ENIAC had.

We therefore decided to repeat the ENIAC integrations using a programmable mobile phone.

Forecasts by PHONIAC

Peter Lynch \& Owen Lynch

A modern hand-held mobile phone has far greater power than the ENIAC had.

We therefore decided to repeat the ENIAC integrations using a programmable mobile phone.

We converted the program ENIAC.M to PHONIAC.JAR, a J2ME application, and implemented it on a mobile phone.

This technology has great potential for generation and delivery of operational weather forecast products.

PHONIAC：Portable Hand Operated Numerical Integrator and Computer

Weather, November 2008

Forecasts by PHONIAC

Peter Lynch ${ }^{1}$ and Owen Lynch ${ }^{2}$
 'University College Dubin, Meteorology and Climate Cenire, Dublin
 ${ }^{2}$ Dublin Software Laboratory, BM Ireiand
 The first computer weather forecasts were made in 1950, using the ENIAC Electronic Numerical Integrator and Computer). The ENIAC forecasts led to operational numerical weather prediction within five years, and paved the way for the remarkable advances in weather prediction and climate modelling that have been made over the past half century. The basis for the forecasts was the barotropic vorticity equation (BVE. In the present study, we describe the solution of the BVE on a mobile phone (cell-phone), and repeat one of the ENIAC forecasts. We speculate on the possible applications of mobile phones for micro-scale numerical weather prediction.

The ENIAC Integrations
and John von Neumann (1950; cited below as (FvN). The story of this work was recounted by Geonge Platzman in his Victor P. Starr Memorial Lecture (Platzman, 1979). The atmosphere was treated as a single layer, represented by conditions at the 500 hPa level, modelled by the BVE. This equation, expressing the conservation of absolute vorticity following the flow, gives the rate of change of the Laplacian of height in terms of the advection. The tendency of the height field is obtained by solving a Poisson equation with homogeneous boundary conditions. The height field may then be advanced to the next time level. With a one hour time-step, this cycle is repeated 24 times for a one-day forecast.

The initial data for the forecasts were prepared manually from standard operational 500 hPa analysis charts of the U.S. Weather Bureau. discretised to a grid of 19 by 16 points with grid interval of 736 km . Centred spatial finite differences and a leapfrog timescheme were used. The boundary conditions for height were held constant throughout each 24 -hour integration. The fonecast starting at 0300 ute January 5, 1949 is shown in
vorticity. The forecast height and vorticity are shown in the right panel. The feature of primary interest was an intense depression over the United States. This deepened, moving NE to the $90{ }^{\circ} \mathrm{W}$ meridian in 24 hours. A discussion of this forecast, which underestimated the development of the depression, may be found in CFvN and in Lynch (2008).

Dramatic growth in computing power

The oft-cited paper in Tellus (CFvN) gives a complete account of the computational algorithm and discusses four forecast cases The ENIAC, which had been completed in 1945, was the first programmable electronic digital computer ever built. It was a gigantic machine, with 18,000 thermionic valves, filling a large room and consuming 140 kW of power. Input and output was by means of punch-cards. McCartney (1999) provides an absorbing account of the origins design. development and destiny of ENIAC.

Advances in computer technology over the past half-century have been spectacular. The increase in computing power is encap-

A Challenge to you all ...

A Challenge to you all ...

Run an NWP model on a Smart Phone

A Challenge to you all ...

Run an NWP model on a Smart Phone

There are many more possibilities for these devices.

The Rock'n'roller

A Bowling-ball from Stillorgan

Thanks to Brian O'Connor (School of Physics) for slicing the top off

Recession l: see website

The Remarkable Rock'n'roller

The rock'n'roller is a rigid body, spherical in form but having an asymmetric distribution of mass. It rolls, without slipping, on a horizontal surface. The moments of inertia are I, $I_{2}<I_{3}$ and the geometric centre lies on the principal axis corresponding to I_{3}
The rock'n'roller has a facinating pattern of behaviour: When released from a tilting position, it rocks back and forth and precesses in the azimuthal direction. But this precession reverses from time to time, a phenomenon we call recession. Recession represents a dramatic change in the character of the motion arising from a breaking of the inertial symmetry $I_{1}=I_{2}$

Recession can be seen in the animation below, and is fully discussed in a paper in J. Phys. A (see link to PDF below).

The Rock'n'roller

Animation of the Rock'n'roller

[Movie produced by miguel Bustamante]

- Peter Lynch \& Miguel D Bustamante, 2009: Precession and Recession of the Rock'n'roller.
J. Phys. A: Math. Theor. 42 (2009) 425203 (25pp). PDF. DOI: 10.1088/1751-8113/42/42

Paper chosen for inclusion in IOP Select
Find 需 \square Match case

The Physical System

Consider a spherical rigid body with an asymmetric mass distribution.

Specifically, we consider a loaded sphere.
The dynamics are essentially the same as for the tippe-top, which has been studied extensively.

Unit radius and unit mass.
Centre of mass off-set a distance a from the centre.
Moments of inertia $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}, with $\mathrm{I}_{1} \approx \mathrm{I}_{2}<\mathrm{I}_{3}$.

Symmetric Case: Routh Sphere $\left(I_{1}=I_{2}\right)$

Asymmetric Case: Rock'n'roller $\left(\mathrm{I}_{1}<\mathrm{I}_{2}\right)$

The Lagrangian

The Lagrangian of the system is easily written down:

$$
L=\frac{1}{2}\left(\mathbf{I}_{1} \omega_{1}^{2}+\mathbf{I}_{2} \omega_{2}^{2}+\mathbf{I}_{3} \omega_{3}^{2}\right)+\frac{1}{2}\left(\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}\right)-g a(1-\cos \theta)
$$

The equations may then be written (in vector form):

$$
\boldsymbol{\Sigma} \dot{\theta}=\omega, \quad \mathrm{K} \dot{\omega}=\mathbf{P}_{\omega}
$$

where the matrices Σ and K are known and

$$
\mathbf{P}_{\omega}=\left(\begin{array}{c}
-\left(g+\omega_{1}^{2}+\omega_{2}^{2}\right) a s \chi+\left(\mathbf{l}_{2}-\mathbf{l}_{3}-a f\right) \omega_{2} \omega_{3} \\
\left(g+\omega_{1}^{2}+\omega_{2}^{2}\right) a s \sigma+\left(\mathbf{l}_{3}-\mathbf{l}_{1}+a f\right) \omega_{1} \omega_{3} \\
\left(\mathbf{l}_{1}-\mathbf{l}_{2}\right) \omega_{1} \omega_{2}+a s\left(-\chi \omega_{1}+\sigma \omega_{2}\right) \omega_{3}
\end{array}\right)
$$

Note that neither K nor P_{ω} depends explicitly on ϕ.

Nonholonomic Constraints

Assume nonholonomic constraints

$$
g_{k}\left(q_{\rho}, \dot{q}_{\rho}\right)=0 .
$$

When the constraints are linear in the velocities, we can write the equations as:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}+\sum_{k} \mu_{k} \frac{\partial g_{k}}{\partial \dot{q}_{i}}=0 .
$$

For the Rock'n'roller, we have one holonomic constraint and two nonholonomic constraints.

The enigma of nonholonomic constraints

M. R. Flannery ${ }^{\text {a }}$

School of Physics, Georgia Institute of Technologv, Atlanta, Georgia 30332
(Received 16 February 2004; accepted 8 October 2004)
The problems associated with the modification of Hamilton's principle to cover nonholonomic constraints by the application of the multiplier theorem of variational calculus are discussed. The reason for the problems is subtle and is discussed, together with the reason why the proper account of nonholonomic constraints is outside the scope of Hamilton's variational principle. However, linear velocity constraints remain within the scope of D'Alembert's principle. A careful and comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic constraints. © 2005 American Association of Physics Teachers.
[DOI: 10.1119/1.1830501]

Am. J. Phys., Vol 73, 265-272 (2005)

Constants of Motion for Routh Sphere

The total energy is conserved:
$K=\frac{1}{2}\left[u^{2}+v^{2}+w^{2}\right]+\frac{1}{2}\left[\mathbf{l}_{1} \omega_{1}^{2}+\mathbf{I}_{2} \omega_{2}^{2}+\mathbf{I}_{3} \omega_{3}^{2}\right]+m g a(1-\cos \theta)$.
Jellett's constant is the scalar product:

$$
\boldsymbol{C}_{J}=\mathbf{L} \cdot \mathbf{r}=\mathbf{I}_{1} \boldsymbol{S}\left(\sigma \omega_{1}+\chi \omega_{2}\right)+\mathbf{I}_{3} f \omega_{3}=\text { constant } .
$$

where $f=\cos \theta-a, \sigma=\sin \psi$ and $\chi=\cos \psi$.

> Stephen O'Brien \& John L Synge first gave this interpretation

Routh's constant (difficult to interpret physically):

$$
C_{R}=\left[\sqrt{l_{3}+s^{2}+\left(\boldsymbol{l}_{3} / l_{1}\right) f^{2}}\right] \omega_{3}=\text { constant } .
$$

Edward J Routh

John H Jellett

1831-1907
1817-1888

Iopscience Welcome peterlynch Edit account Logout Athens/Institutional login

Journal of Physics A: Mathematical and Theoretical

Home Search Collections Journals About Contact us My IOPscience

Precession and recession of the rock'n'roller

IOPSELECT

Author Peter Lynch and Miguel D Bustamante
Affiliations School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland
E-mail Peter.Lynch@ucd.ie Miguel.Bustamante@ucd.ie
Journal Journal of Physics A: Mathematical and Theoretical ${ }^{-}$Create an alert ${ }^{\text {Q }}$ RSS this journal

Issue Volume 42, Number 42
Citation Peter Lynch and Miguel D Bustamante 2009 J. Phys. A: Math. Theor. 42425203 doi: 10.1088/1751-8113/42/42/425203

Article References

${ }^{\square}$ Tag this article Full text PDF $(815 \mathrm{~KB})$
Abstract We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gra distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre symmetric case, with moments of inertia $l_{1}=l_{2}<l_{3}$, is integrable and the motion is completely regular.
（A）$\psi_{0}=\pi / 100$
（B）$\psi_{0}=\pi / 8$
（C）$\psi_{0}=\pi / 4$

（E）$\psi_{0}=3.9 \pi / 8$

（D）$\psi_{0}=3 \pi / 8$

（F）$\psi_{0}=\pi / 2$ 1

Orbit of stars in a Globular Cluster

Figure 3.8 Two orbits of a common energy in the potential $\Phi_{\text {t }}$ of equation (3.103) when $v_{0}=1$, $q=0.9$ and $R_{c}=0.14$; top, a box orbit; bottom, a loop orbit. The closed parent of the loop orbit is also shown. The energy, $E=-0.337$, is that of the isopotential surface that cuts the long axis at $x=5 R_{\text {ce }}$.

A Globular Cluster (m22)

Box orbit (left) and loop orbit (right)

Quaternionic Formulation

The Euler angles have a singularity when $\theta=0$ The angles ϕ and ψ are not uniquely defined there.

We can obviate this problem by using Euler's symmetric parameters

$$
\begin{array}{ll}
\gamma=\cos \frac{1}{2} \theta \cos \frac{1}{2}(\phi+\psi) & \xi=\sin \frac{1}{2} \theta \cos \frac{1}{2}(\phi-\psi) \\
\zeta=\cos \frac{1}{2} \theta \sin \frac{1}{2}(\phi+\psi) & \eta=\sin \frac{1}{2} \theta \sin \frac{1}{2}(\phi-\psi)
\end{array}
$$

There are the components of a unit quaternion

$$
\begin{gathered}
\mathbf{q}=\gamma+\xi \mathbf{i}+\eta \mathbf{j}+\zeta \mathbf{k} \\
\gamma^{2}+\xi^{2}+\eta^{2}+\zeta^{2}=1
\end{gathered}
$$

Here as he walked by

 on the 16 th of October 1843 Sir Villiam Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

\mathcal{E} cut it on a stone of this bridge

Expressions for the angular rates of change:

$$
\begin{aligned}
& \dot{\theta}=\frac{(\xi \dot{\xi}+\eta \dot{\eta})-(\gamma \dot{\gamma}+\zeta \dot{\zeta})}{\sqrt{\left(\xi^{2}+\eta^{2}\right)\left(\gamma^{2}+\zeta^{2}\right)}} \\
& \dot{\phi}=\left(\frac{\gamma \dot{\zeta}-\zeta \dot{\gamma}}{\gamma^{2}+\zeta^{2}}\right)+\left(\frac{\xi \dot{\eta}-\eta \dot{\xi}}{\xi^{2}+\eta^{2}}\right) \\
& \dot{\phi}=\left(\frac{\gamma \dot{\zeta}-\zeta \dot{\gamma}}{\gamma^{2}+\zeta^{2}}\right)-\left(\frac{\xi \dot{\eta}-\eta \dot{\xi}}{\xi^{2}+\eta^{2}}\right)
\end{aligned}
$$

The components of angular velocity are

$$
\begin{aligned}
& \omega_{1}=2[\gamma \dot{\xi}-\xi \dot{\gamma}+\zeta \dot{\eta}-\eta \dot{\zeta}] \\
& \omega_{2}=2[\gamma \dot{\eta}-\eta \dot{\gamma}+\xi \dot{\zeta}-\zeta \dot{\xi}] \\
& \omega_{3}=2[\gamma \dot{\zeta}-\zeta \dot{\gamma}+\eta \dot{\xi}-\xi \dot{\eta}]
\end{aligned}
$$

The first-order (small θ) equations may be written

$$
\begin{aligned}
\ddot{\gamma}+\left(\frac{\omega_{3}}{2}\right)^{2} \gamma & =0 \\
\ddot{\zeta}+\left(\frac{\omega_{3}}{2}\right)^{2} \zeta & =0 \\
\ddot{\xi}+\kappa_{21} \omega_{3} \dot{\eta}+\Omega_{1}^{2} \xi & +\epsilon^{\prime} \zeta\left\{(1-\kappa) \omega_{3}(\gamma \dot{\xi}+\zeta \dot{\eta})+\Omega_{11}^{2}(\gamma \eta-\zeta \xi)\right\}=0 \\
\ddot{\eta}-\kappa_{21} \omega_{3} \dot{\xi}+\Omega_{1}^{2} \eta & -\epsilon^{\prime} \gamma\left\{(1-\kappa) \omega_{3}(\gamma \dot{\xi}+\zeta \dot{\eta})+\Omega_{11}^{2}(\gamma \eta-\zeta \xi)\right\}=0
\end{aligned}
$$

where ϵ^{\prime} is related to the asymmetry $\left(\mathbf{l}_{2}-\mathbf{I}_{\mathbf{1}}\right) / \mathbf{I}_{1}$.
By a simple rotation of coordinates, they can be transformed to a system with constant coefficients.

Thus, the complete solution can be obtained.

Competition

Here as he walked by on the 16 th of October 1843 Sir William Rowan Hamilton

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ij} \mathrm{k}=-1
$$

Competition

Here as he walked by on the 16th of October 1843 Sir Villiam Rowan Hamilton

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ij} \mathrm{k}=-1
$$

(1) Find $[\mathrm{ij}-\mathrm{j} \mathrm{i}]$. (2) Find $1 /[\mathrm{ij}-\mathrm{j} \mathrm{i}]$. (3) Find i / j.

You have two minutes !

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

$$
i(j j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i
$$

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

$$
\begin{gathered}
i(i j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i \\
i j=k \quad j k=i \quad k i=j
\end{gathered}
$$

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=i j k=-1 \\
i(i j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i \\
i j=k \quad j k=i \quad k i=j
\end{gathered}
$$

Similarly

$$
j i=-k \quad k j=-i \quad i k=-j
$$

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=i j k=-1 \\
i(i j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i \\
i j=k \quad j k=i \quad k i=j
\end{gathered}
$$

Similarly

$$
j i=-k \quad k j=-i \quad i k=-j
$$

(1) $[j-j]=k-(-k)=2 k$

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=i j k=-1 \\
i(i j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i \\
i j=k \quad j k=i \quad k i=j
\end{gathered}
$$

Similarly

$$
j i=-k \quad k j=-i \quad i k=-j
$$

(1) $[j j-j i]=k-(-k)=2 k$
(2) $\frac{1}{2 k}=\frac{k}{2 k k}=\frac{k}{-2}=-\frac{1}{2} k$

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=i j k=-1 \\
i(i j k)=(i i) j k=-j k=-i, \quad \text { So } \quad j k=i \\
i j=k \quad j k=i \quad k i=j
\end{gathered}
$$

Similarly

$$
j i=-k \quad k j=-i \quad i k=-j
$$

(1) $[j j-j]=k-(-k)=2 k$
(2) $\frac{1}{2 k}=\frac{k}{2 k k}=\frac{k}{-2}=-\frac{1}{2} k$
(3) $i\left(\frac{1}{j}\right)=i(-j)=-k \quad\left(\frac{1}{j}\right) i=(-j) i=+k$

Discretizing the Sphere

Regular Latitude-Longitude Grid

Challenge: Find a uniform distribution of points thousands of them - on a sphere.

The Five Platonic Solids

Distributing points on the sphere

Convex hull, Voronoi cells and Delaunay triangulation

Covering and packing with spherical caps

Interpolatory cubature, cubature weights and determinants

틀

Conformal Stretched Grid

The Cubed Sphere

Triangulated Icosahedral Grid

Stretched Icosahedral Grid

UCD
(18)

To make a stretched grid

- Gather the grid points in the north pole region (left figure)
- Rotate the grid system to the interested region (right figure)

Penta-Hexagonal Grid

Yin-Yang grid

Rectangles, minimal overlap

ثิ 音
UCD
DUBLIN

Figure 2. A spherical Fibonacci grid, at resolution $N=1000$ (2001 grid points). As in Fig. 1, the spiral structure is highlighted by marking every 34 th and 55 th grid point.

Fibonacci Grid

Inspired by Sun-flowers and Pineapples

The ultimate grid remains elusive.

This is your big chance of fame.

