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Abstract

We consider two types of trajectories found in a wide range of mechanical systems, viz. box orbits and loop
orbits. We elucidate the dynamics of these orbits in the simple context of a perturbed nonlinear harmonic
oscillator in two dimensions. We then examine the small-amplitude motion of a rigid body, the rock’n’roller,
a sphere with eccentric distribution of mass. The equations of motion are expressed in quaternionic form
and can be solved analytically. Both types of orbit, boxes and loops, are found, the particular form
depending on the initial conditions. The phenomenon of recession, or reversal of precession, is associated
with box orbits. The small-amplitude solutions for the symmetric case, or Routh sphere, are expressed
explicitly in terms of epicycles; there is no recession in this case.
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The RnR: Main Topics

I Two types of trajectories: boxs and loops.
I Simple model: Perturbed 2D harmonic oscillator.
I Small-amplitude motion of rock’n’roller.
I Equations of motion in quaternionic form.
I Recession is associated with box orbits.
I Routh sphere: epicycles; no recession.
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The RnR: a Topless Bowling-ball
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Candle-holders from Copenhagen

Fireballs (designer: Pernille Vea)
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Recession I



Globular Cluster: Messier 54, NGC 6715
Class III Extragalactic Globular Cluster.

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



Box and Loop Orbits: Globular Cluster

Two orbits in a logarithmic gravitational potential.
Left: a box orbit. Right: a loop orbit.

Galactic Dynamics. Binney and Tremaine (2008) [pg. 174]
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Box and Loop Orbits: Rock’n’roller

Trajectory of the Rock’n’roller in θ–φ-plane
(θ radial, φ azimuthal) with ε = 0.1.



Box and Loop Orbits: SHO

Box and Loop orbits for the perturbed SHO.
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The Perturbed Harmonic Oscillator

Unperturbed system: 2D SHO with equal frequencies:

L0 = 1
2(ẋ2 + ẏ2)− 1

2ω
2
0(x2 + y2)

The perturbed system has Lagrangian:

L = L0 − δy2 − εr 4 ,

where δ � ω2
0 and ε� 1.

The δ-term breaks the 1 : 1 resonance.

The ε-term is a radially symmetric stiffening.

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



The Perturbed Harmonic Oscillator

Unperturbed system: 2D SHO with equal frequencies:

L0 = 1
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To analyse the system, we assume a solution

x(t) = <{A(t) exp(iω0t)} y(t) = <{B(t) exp(iω0t)}

and average the Lagrangian over the fast motion.
Defining new variables, we can write:

dW
dτ

= λ(1−W 2) sinφ cosφ

dφ
dτ

= λW sin2 φ− 1

where λ = 2εU/δ is a non-dimensional parameter.

These are the canonical equations for the Hamiltonian

H = 1
2λ(1−W 2) sin2 φ + W .
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Phase portraits (W–φ plane) for the perturbed SHO.
Left panel: λ = 0.5. Right panel: λ = 2.0.



Box and Loop Orbits: SHO

Box and Loop orbits for the perturbed SHO.
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The Hierarchy of Spheres



Symmetric Case: Routh Sphere (I1 = I2)



Asymmetric Case: Rock’n’roller (I1 < I2)



Sergey Alexeyevich Chaplygin



Sergey Alexeyevich Chaplygin

Sergey Alexeyevich Chaplygin (1869–1942) was a Russian physicist,
mathematician, and mechanical engineer. He is known for mathematical
formulas such as Chaplygin’s equation.

He graduated in 1890 from Moscow University, and later became a professor. He
taught mechanical engineering at Moscow’s Woman College in 1901, and applied
mathematics at Moscow School of Technology, 1903.

Chaplygin was elected to the Russian Academy of Sciences in 1924. The lunar
crater Chaplygin and town Chaplygin are named in his honor. His "Collected
Works" in four volumes were published in 1948.
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RnR: The Physical System

Consider a spherical rigid body with an asymmetric
mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.

Unit radius and unit mass.

Centre of mass off-set a distance a from the centre.

Moments of inertia I1, I2 and I3, with I1 ≈ I2 < I3.
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The Dynamical Equations
In an inertial frame

dv
dt

= F
dL
dt

= G

Euler angles (θ, φ, ψ) related to angular velocity

ω1 = θ̇ , ω2 = sφ̇ , ω3 = cφ̇ + ψ̇ .

where s = sin θ and c = cos θ

Rotating frame of reference: angular velocity is

ω = ω1i + ω2j + ω3k

Rotating frame of reference: angular momentum is

L = I1ω1i + I2ω2j + I3ω3k .
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In the rotating (body) frame, the equations become

dv
dt

+ Ω×v = F

and
dL
dt

+ Ω×L = G

v̇1 + Ω2v3 − Ω3v2 = F1

v̇2 + Ω3v1 − Ω1v3 = F2

v̇3 + Ω1v2 − Ω2v1 = F3

I1ω̇1 + I3Ω2ω3 − I2Ω3ω2 = G1

I2ω̇2 + I1Ω3ω1 − I3Ω1ω3 = G2

I3ω̇3 + I2Ω1ω2 − I1Ω2ω1 = G3
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1
2(I1ω2

1 + I2ω2
2 + I3ω2

3) + 1
2(Ẋ 2 + Ẏ 2 + Ż 2)−ga(1− cos θ)

The equations may then be written (in vector form):

Σθ̇ = ω , Kω̇ = Pω

where the matrices Σ and K are known and

Pω =

 −(g + ω2
1 + ω2

2)asχ + (I2 − I3 − af )ω2ω3

(g + ω2
1 + ω2

2)asσ + (I3 − I1 + af )ω1ω3

(I1 − I2)ω1ω2 + as(−χω1 + σω2)ω3


Note that neither K nor Pω depends explicitly on φ.

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



The Lagrangian
The Lagrangian of the system is easily written down:

L = 1
2(I1ω2

1 + I2ω2
2 + I3ω2

3) + 1
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Nonholonomic Constraints

We assume perfectly rough contact (rolling motion).

Holonomic constraints fk (qρ) = 0 can be handled by
modifying the Lagrangian:

L −→ L +
∑

λk fk

For non-holonomic constraints this doesn’t work.

Misunderstandings on non-holonomy abound:
I Whittaker and Landau & Lifshitz get it right!
I Goldstein et al. (2002) get it wrong!
I See Flannery (2005) for a review.
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Nonholonomic Constraints

Assume nonholonomic constraints

gk (qρ, q̇ρ) = 0 .

When the constraints are linear in the velocities, we
can write the equations as:

d
dt
∂L
∂q̇i
− ∂L
∂qi

+
∑

k

µk
∂gk

∂q̇i
= 0 .

For the Rock’n’roller, we have one holonomic
constraint and two nonholonomic constraints.
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The Routh Sphere: I1 = I2



Constants of Motion for Routh Sphere
In case I1 = I2, there are three degrees of freedom and
three constants of integration.

The kinetic energy is

K = 1
2 [u2 + v2 + w2] + 1

2 [I1ω2
1 + I1ω2

2 + I3ω2
3]

The potential energy is

V = mga(1− cos θ) .

Since there is no dissipation,

E = K + V = constant .
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Constants of Motion for Routh Sphere
Jellett’s constant is the scalar product:

CJ = L · r = I1s(σω1 + χω2) + I3f ω3 = constant .

where f = cos θ − a, σ = sinψ and χ = cosψ.
S O’Brien & J L Synge first gave this interpretation.

Routh’s constant (difficult to interpret physically):

CR =

[√
I3 + s2 + (I3/I1)f 2

]
ω3 = constant .

Constant CR implies conservation of sign of ω3 . . .
. . . but this does not automatically preclude recession!
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Edward J Routh John H Jellett

1831–1907 1817–1888



Edward J Routh

Edward John Routh (20 January 1831 to 7 June 1907), an English mathematician,
noted as the outstanding coach of students preparing for the Mathematical
Tripos examination of the University of Cambridge.

He also did much to systematize the mathematical theory of mechanics and
created several ideas critical to the development of modern control systems
theory.

In 1854, Routh graduated just above James Clerk Maxwell, as Senior Wrangler,
sharing the Smith’s prize with him. He coached over 600 pupils between 1855
and 1888, 27 of them making Senior Wrangler.

Known for: Routh-Hurwitz theorem, Routh stability criterion, Routh array,
Routhian, Routh’s theorem, Routh’s algorithm, Kirchhoff-Routh function.
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John H Jellett

J. H. Jellett was a native of Cashel, County Tipperary, the son of a clergyman. He
graduated from Trinity College with honors in mathematics in 1838, and was
elected to Fellowship in 1840. In 1847 he was appointed to the newly established
chair of Natural Philosophy (Applied Mathematics), which he held until 1870.

Jellett was a scholar of considerable eminence and his publications cover the
fields of pure and applied mathematics, notably the theory of friction and the
properties of optically active solutions, as well as sermons and lectures on
religious topics.

He was President of the Royal Irish Academy for five years from 1869, received
the Royal Society’s Medal in 1881 and an honorary degree from Oxford in 1887.

His politics were sufficiently liberal to make him an acceptable candidate to
Gladstone who appointed him Provost of Trinity College Dublin in April 1881. He
died in office on 19 February 1888.
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Integrability of Routh Sphere

Using Routh’s constant CR, we have ω3 = ω3(θ).

Then, using Jellett’s constant CJ , we have ω2 = ω2(θ).

Using the energy equation, we can now write:

θ̇2 = f (θ) .

For a given θ, both ω2 and ω3 are fixed:
This confirms that recession is impossible.
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Invariants of the Rock’n’roller

The only known constant of motion is total energy E .

There remains a symmetry: the system is unchanged
under the transformation

φ −→ φ + δφ

The spirit of Noether’s Theorem would indicate
another constant associated with this symmetry;

So far, we have not found a “missing constant”.

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



Invariants of the Rock’n’roller

The only known constant of motion is total energy E .

There remains a symmetry: the system is unchanged
under the transformation

φ −→ φ + δφ

The spirit of Noether’s Theorem would indicate
another constant associated with this symmetry;

So far, we have not found a “missing constant”.

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



Rock’n’roller
The Jellett and Routh quantities

QJ = L · r = I1s(σω1 + χω2) + I3f ω3

QR =

[√
I3 + s2 + (I3/I1)f 2

]
ω3

are no longer conserved for the Rock’n’roller.

We have found, analytically, that recession occurs
when critical values of these quantities are crossed:

QJ = Qcrit
J,0 and QJ = Qcrit

J,π

These are shown on the figure below.
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QJ versus QR







Precession and recession of the Rock’n’roller
(J.Phys.A.)



Quaternionic Formulation
The Euler angles have a singularity when θ = 0
The angles φ and ψ are not uniquely defined there.

We can obviate this problem by using
Euler’s symmetric parameters:

γ = cos 1
2θ cos 1

2(φ + ψ) ξ = sin 1
2θ cos 1

2(φ− ψ)

ζ = cos 1
2θ sin 1

2(φ + ψ) η = sin 1
2θ sin 1

2(φ− ψ)

There are the components of a unit quaternion

q = γ + ξi + ηj + ζk

γ2 + ξ2 + η2 + ζ2 = 1
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William Rowan Hamilton (1805–1865)



Quaternion Equations
Euler’s symmetric parameters,
or
Euler-Rodrigues parameters:

γ = cos 1
2θ cos 1

2(φ + ψ) ξ = sin 1
2θ cos 1

2(φ− ψ)

ζ = cos 1
2θ sin 1

2(φ + ψ) η = sin 1
2θ sin 1

2(φ− ψ)

The components of angular velocity are

ω1 = 2[γξ̇ − ξγ̇ + ζη̇ − ηζ̇]

ω2 = 2[γη̇ − ηγ̇ + ξζ̇ − ζξ̇]

ω3 = 2[γζ̇ − ζγ̇ + ηξ̇ − ξη̇]

Intro SHO Equations Constraints Routh Sphere Rock’n’roller Quaternions Epi-ellipses RS bis



At first order in small θ: parameters as

γ = cos 1
2(φ + ψ) = O(1) ξ = 1

2θ cos 1
2(φ− ψ) = O(θ)

ζ = sin 1
2(φ + ψ) = O(1) η = 1

2θ sin 1
2(φ− ψ) = O(θ)

The third equation reduces to

ω̇3 = O(θ2)

so we take ω3 to be constant.

The elements γ and ζ are

γ = cos 1
2ω3(t − t00) , ζ = sin 1

2ω3(t − t00)

(we can choose t00 = 0).
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The remaining two equations are

γξ̈ + ζη̈ − κ21ω3(ζξ̇ − γη̇) + Ω2
1(γξ + ζη) = 0

ζξ̈ − γη̈ + κ12ω3(γξ̇ + ζη̇) + Ω2
2(ζξ − γη) = 0

These equations may be transformed by rotation(
µ
ν

)
=

[
γ ζ
−ζ γ

](
ξ
η

)
.

The equations may now be written

µ̈− 2k2ν̇ + Ω̃2
1µ = 0

ν̈ + 2k1µ̇ + Ω̃2
2ν = 0
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We seek a solution in the form

µ = µ0 cos β(t − t0) and ν = ν0 sin β(t − t0)

The system may be written[
Ω̃2

1 − β2 −2k2β

−2k1β Ω̃2
2 − β2

](
µ0

ν0

)
=

(
0
0

)
The determinant is a biquadratic in β with four real
roots ±β1 and ±β2.

The eigenvectors are (1, λ1)T and (1, λ2)T, with

λ1 =
Ω̃2

1 − β2
1

2k2β1
=

2k1β1

Ω̃2
2 − β2

1

, λ2 =
Ω̃2

1 − β2
2

2k2β2
=

2k1β2

Ω̃2
2 − β2

2



Repeat: the equations for µ and ν are:

µ̈− 2k2ν̇ + Ω̃2
1µ = 0

ν̈ + 2k1µ̇ + Ω̃2
2ν = 0

The general solution is

µ = µ1 cos β1(t − t1) + µ2 cos β2(t − t2)

ν = λ1µ1 sin β1(t − t1) + λ2µ2 sin β2(t − t2)
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Lagrangian and Hamiltonian

The quaternion equations arise from the Lagrangian

L = 1
2(k1µ̇

2 + k2ν̇
2)− 1

2(k1Ω̃2
1µ

2 + k2Ω̃2
2ν

2) + k1k2(µν̇ − νµ̇)

The generalized momenta are

pµ = k1(µ̇− k2ν) and pν = k2(ν̇ + k2µ)

The Hamiltonian is

H = 1
2

(
p2
µ

k1
+

p2
ν

k2

)
− [k1µpν − k2νpµ]

+ 1
2 [k1(k1k2 + Ω̃2

1)µ2 + k2(k1k2 + Ω̃2
2)ν2]



Constants of the Motion

The numerical value of the Hamiltonian (energy) is

Eµ+ν = 1
2(k1µ̇

2 + k2ν̇
2) + 1

2(k1Ω̃2
1µ

2 + k2Ω̃2
2ν

2)

An additional constant of the motion can be found:

K1 ≡
(

λ2µ̇+β2ν
β1λ2−β2λ1

)2
+
(

ν̇−β2λ2µ
β1λ1−β2λ2

)2
= µ2

1 ,

K2 ≡
(

λ1µ̇+β1ν
β1λ2−β2λ1

)2
+
(

ν̇−β1λ1µ
β1λ1−β2λ2

)2
= µ2

2 .

Numerical tests confirm that K1 and K2 are constant.
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Epi-ellipses
The complete solution for small amplitude is:

γ = cos 1
2ω3t

ζ = sin 1
2ω3t

µ = µ1 cos β1(t − t1) + µ2 cos β2(t − t2)

ν = λ1µ1 sin β1(t − t1) +λ2µ2 sin β2(t − t2)

There are two components, each an ellipse:

µ = µ1 cos[β1(t − t1)] , ν = µ1λ1 sin[β1(t − t1)] ,

and

µ = µ2 cos[β2(t − t2)] , ν = µ2λ2 sin[β2(t − t2)] .
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Rock’n’roller: epi-ellipse in the µ–ν-plane.
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Rock’n’roller: epi-ellipse in the µ–ν-plane.
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Criterion for Recession

The criterion for recession is:

(|µ1| − |µ2|)(|λ1µ1| − |λ2µ2|) < 0 .
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Routh Sphere
For the symmetric case (ε = 0) the solution is:

µ = µ1 cos β1(t − t1) + µ2 cos β2(t − t2)

ν = µ1 sin β1(t − t1)− µ2 sin β2(t − t2)

It follows immediately that

µ2 + ν2 = µ2
1 + µ2

2 + 2µ1µ2 cos[(β1 + β2)t − b12]

The absence of recession follows from:

||µ1| − |µ2|| ≤
√
µ2 + ν2 ≤ |µ1|+ |µ2|

The accessible region is annular:
the angular momentum cannot change sign.
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Constants of the motion

For the Routh Sphere there are two constants:

Eµ+ν = 1
2(µ̇2 + ν̇2) + 1

2Ω̃2(µ2 + ν2)

and
K = (µν̇ − νµ̇) + k(µ2 + ν2)

Jellett’s constant and Routh’s constant are

QJ = I1s2φ̇ + I3fω3 and QR = ω3/ρ

where ρ = 1/
√

I3 + s2 + (I3/I1)f 2.
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Routh and Jellett Constants

To O(θ2), the Routh and Jellett constants are:

Q̃J = (I1θ2φ̇ + I3f0ω3)− 1
2 I3ω3θ

2

Q̃R =

[
1 +

(
I1 − I3f0

(I1 + f 2
0 )I3

)
θ2

2

]
ω3

ρ0

where ρ0 = 1/
√

(I1 + f 2
0 )I3/I1.

We easily show that

K =
1

4I1

[
Q̃J − I3f0ρ0Q̃R

]
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Epicycle character of solution

The solution has two components:

(1) µ = µ1 cos[β1(t − t1)]

ν = µ1 sin[β1(t − t1)]

and

(2) µ = µ2 cos[β2(t − t2)]

ν = −µ2 sin[β2(t − t2)]

The complete motion is thus an epicycle.
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Routh Sphere:
Trajectories in the µ–ν-plane are epicycles.
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Routh Sphere: trajectories in the θ–φ-plane are epicycles.
Panels (A)–(C): Analytical solutions
Panels (D)–(F): Numerical solutions.
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Trajectory of Point of Contact

The movement of the geometric centre is:

(Ẋ , Ẏ ,0) = ω× K

In terms of quaternions, this is

Ẋ = 2[γη̇ − ηγ̇ + ζξ̇ − ξζ̇]

Ẏ = 2[ξγ̇ − γξ̇ + ζη̇ − ηζ̇]

More explicitly:

X = [2µ1β1/α1] sin(α1t − β1t1)− [2µ2β2/α2] sin(α2t − β2t2)

Y = − [2µ1β1/α1] cos(α1t − β1t1)− [2µ2β2/α2] cos(α2t − β2t2)



Top row: trajectories in θ–φ-plane.
Bottom row: plots of the point of contact.
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Conclusion

Box and loop orbits are found in a wide range of physical systems. We illustrate them in the elementary
context of a perturbed simple harmonic oscillator. Then, the dynamical equations for small amplitude
motions of the Rock’n’roller are expressed in terms of quaternions. The complete solution is expressed as
an epi-ellipse, a combination of two purely elliptic motions. This allows us to clarify the phenomenon of
recession, and the conditions under which it occurs. In the particular case of a symmetric body (ε = 0), the
Routh Sphere, the solution reduces to an epicycle. Only loop orbits occur and there is no recession.

We have confined attention in the present study to the dynamics at first order in the polar angle θ. In an
extension of this work, we will present a more detailed perturbation analysis, including a rigorous
demonstration of energy conservation to second order, explicit expressions for the Routh and Jellett
quantities QR and QJ and a complete analysis of the recession of the Rock’n’roller.

One of the motivations for studying the Rock’n’roller is the hope of finding an invariant of the motion in
addition to the energy. This expectation arises from the symmetry of the body. For the general Chaplygin
Sphere, there is a finite angle δ between the principal axis corresponding to I3 and the line joining the
centres of gravity and symmetry. For the Rock’n’roller, this angle is zero and the Lagrangian is independent
of the azimuthal angle φ. However, we have not found a second invariant and, considering the
non-holonomic nature of the problem, its existence remains an open question.
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Thank You
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