Parity and Partition of the Rational Numbers

Peter Lynch & Michael Mackey

School of Mathematics & Statistics University College Dublin

Irish Mathematical Society Meeting Technical University of Dublin, 2 September 2022

Outline

Overview

Three-Way Parity of the Rationals

Density of subsets of ℕ

2-Adic Valuation and Dyadic Rationals

The Calkin-Wilf & Stern-Brocot Trees

Conclusion

Overview

Parity

Densitv

Dvadics

CW+SB Trees

Outline

Overview

Three-Way Parity of the Rationals

Density of subsets of $\ensuremath{\mathbb{N}}$

2-Adic Valuation and Dyadic Rationals

The Calkin-Wilf & Stern-Brocot Trees

Conclusion

Overview

Parity

Density

Dyadics

(

CW+SB Trees

Synopsis

The concept of parity is extended from the integers to the rational numbers. Three parity classes are found — odd, even and 'none'.

Using the 2-adic valuation, we partition the rationals into subgroups with a rich algebraic structure.

The Calkin-Wilf tree has a remarkably simple parity pattern, with the sequence odd/none/even repeating indefinitely.

A similar result holds for the Stern-Brocot tree.

Overview

Dyadics

CW+SB Trees

Outline

Overview

Three-Way Parity of the Rationals

Density of subsets of $\mathbb N$

2-Adic Valuation and Dyadic Rationals

The Calkin-Wilf & Stern-Brocot Trees

Conclusion

Overview

Parity

Density

Dyadics

\$

CW+SB Trees

Partitioning the Rational Numbers The natural numbers N split nicely into two subsets:

$$\begin{split} \mathbb{N}_{O} &= & \{1,3,5,7,\dots\} \\ \mathbb{N}_{E} &= & \{2,4,6,8,\dots\} \,. \end{split}$$

The odd and even numbers are equinumerous.

A similar split applies to the integers \mathbb{Z} :

$$\begin{array}{rcl} \mathbb{Z}_{O} & = & \{ \ldots & -3, -1, +1, +3, +5, \ldots \, \} \\ \mathbb{Z}_{E} & = & \{ \ldots & -4, -2, 0, +2, +4, \ldots \, \} \, . \end{array}$$

The integers form an abelian group $(\mathbb{Z}, +)$. \mathbb{Z}_E is an additive subgroup of $(\mathbb{Z}, +)$. It is of index 2, with cosets \mathbb{Z}_E and $\mathbb{Z}_E + 1$.

Overview

Dyadics

CW+SB Trees

Parity

The distinction between odd and even is called parity.

Parity is defined for the integers (whole numbers). Can we extend the concept of parity to the rationals?

The usual 'rules' of parity might be required:

Sum of even numbers is even; product is even.
 Sum of odd numbers is even; product is odd.
 Sum of even and odd is odd; product is even.
 Odd number plus 1 is even; even plus 1 is odd.

Overview

Dyadics

CW+SB Trees

Rules of Parity

Table: Addition (left) and multiplication (right) tables for \mathbb{Z} .

+	even	odd	
even	even	odd	
odd	odd	even	

×	even	odd
even	even	even
odd	even	odd

Overview

Dyadics

CW+SB Trees

Even and Uneven

Parity

For \mathbb{Q} , we could define a number q = m/n to be even if the numerator *m* is even and odd if *m* is odd.

But then $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$, meaning that two odd rationals might add to yield another odd one.

We distinguish between 'odd' and 'uneven':

Density

For q = m/n, $\begin{cases}
q \text{ is even if } m \text{ is even,} \\
q \text{ is uneven if } m \text{ is odd.}
\end{cases}$

Dvadics

CW+SB Trees

Conclusion

Overview

Numerical Evidence

A MATHEMATICA program was written to count the number of even and uneven rationals in (0, 1).

We can list all rationals in (0, 1) in a sequence:

 $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \cdots$

As $n \to \infty$, the proportion of even numbers tends to $\frac{1}{3}$. The proportion of uneven numbers tends to $\frac{2}{3}$.

Colloquially, there are:

Parity

"twice as many uneven as even rationals".

Dvadics

Density

Conclusion

CW+SB Trees

Overview

A Three-way Split

Is there a natural way of separating the uneven numbers into two subsets?

Overview

Parity

Density

Dyadics

CW+SB Trees

A Three-way Split

Is there a natural way of separating the uneven numbers into two subsets?

In fact, there is:

For $q = \frac{m}{n}$, $\begin{cases} q \text{ has even parity if } m \text{ is even,} \\ q \text{ has odd parity if } m \text{ is odd and } n \text{ is odd,} \\ q \text{ has none if } m \text{ is odd and } n \text{ is even.} \end{cases}$

The term none is an acronym:

none = 'neither odd nor even'

Overview

Parity

Dyadics

CW+SB Trees

A Three-way Split

Let *e* be an even integer and *o* an odd one.

Even:
$$\frac{e}{o}$$
 Odd: $\frac{o}{o}$ None: $\frac{o}{e}$.

We define three subsets of the rational numbers:

Even: $\mathbb{Q}_{\mathrm{E}} = \{q \in \mathbb{Q} : q = \frac{2m}{2n+1} \text{ for some } m, n \in \mathbb{Z}\}$ **Odd:** $\mathbb{Q}_0 = \{q \in \mathbb{Q} : q = \frac{2m+1}{2n+1} \text{ for some } m, n \in \mathbb{Z}\}$ None: $\mathbb{Q}_N = \{q \in \mathbb{Q} : q = \frac{2m+1}{2n} \text{ for some } m, n \in \mathbb{Z}\}$.

These three sets are disjoint: $\mathbb{Q} = \mathbb{Q}_{F} \uplus \mathbb{Q}_{O} \uplus \mathbb{Q}_{N}$.

Overview

Parity

Dvadics

CW+SB Trees

Addition and multiplication tables for \mathbb{Q} .

+	even	odd	none
even	even	odd	none
odd	odd	even	none
none	none	none	any

×	even	odd	none
even	even	even	any
odd	even	odd	none
none	any	none	none

Note that the first two rows and columns are identical to the tables for the integers.

Overview

Dyadics

CW+SB Trees

rees

Addition and multiplication tables for \mathbb{Q} .

+	even	odd	none
even	even	odd	none
odd	odd	even	none
none	none	none	any

×	even	odd	none
even	even	even	any
odd	even	odd	none
none	any	none	none

Note that the first two rows and columns are identical to the tables for the integers.

We may enquire about the relative sizes of the sets.

Overview

Density

Dvadics

CW+SB Trees

Numerical Evidence

Outline

Density of subsets of ℕ

Overview

Parity

Densitv

Dvadics

CW+SB Trees

Density of Subsets of ℕ

The set of even positive numbers is "the same size" as the set of all natural numbers: Both are infinite countable sets.

However, cardinality is a blunt instrument: Shouldn't even numbers comprise 50% of \mathbb{N} ?

Our intuition tells us that if *B* is a proper subset of *A*, it must be smaller than *A*.

The concept of *density* provides a measure of the relative sizes of sets that is more discriminating than cardinality.

Overview

Dyadics

CW+SB Trees

Natural or Asymptotic Density

Assume a subset A of \mathbb{N} is enumerated as $\{a_1, a_2, \dots\}$.

We define the density of A in \mathbb{N} as the limit, if it exists,

$$\rho_{\mathbb{N}}(A) = \lim_{n \to \infty} \frac{|\{a_k : a_k \leq n\}|}{n}$$

If the fraction of elements of *A* among the first *n* natural numbers converges to a limit $\rho_{\mathbb{N}}(A)$ as $n \to \infty$, then *A* has density $\rho_{\mathbb{N}}(A)$.

For $A = \mathbb{N}_{E}$ or $A = \mathbb{N}_{O}$, we have $\rho(A) = \frac{1}{2}$, consistent with our intuitive notion.

Overview

Parity

Dyadics

.

CW+SB Trees

Density Depends on Order

We can rearrange the natural numbers into a set F such that there are twice as many even as odd numbers in F.

We reorder \mathbb{N} so that each odd number is followed by two even ones:

 $F = \{1, 2, 4, 3, 6, 8, 5, 10, 12, \dots, 2n-1, 4n-2, 4n, \dots\}$

It is easy to see that $\rho_F(\mathbb{N}_E) = \frac{2}{3}$ and $\rho_F(\mathbb{N}_O) = \frac{1}{3}$.

Proceeding further, we can construct a set *H* in which the *n*-th odd number is followed by *n* even numbers.

We find that $\rho_H(\mathbb{N}_E) = 1$, so that "almost all the elements of *H* are even".

Conclusion

Overview

Dyadics

CW+SB Trees

Restricting attention to the even and odd rationals only — omitting those with no parity — we define

 $\mathbb{O}_{\mathbf{P}} := \mathbb{O}_{\mathbf{F}} \uplus \mathbb{O}_{\mathbf{O}}$

This is the set of all rationals whose denominators are odd numbers in \mathbb{Z} .

 \mathbb{O}_{P} is closed under addition and multiplication and forms a commutative subring of \mathbb{Q} .

Moreover, since there are no divisors of zero, $\mathbb{O}_{\mathbb{P}}$ is an integral domain.

Overview

CW+SB Trees

 $\mathbb{Q}_{\mathbb{P}}$ is a (normal) subgroup of \mathbb{Q} .

We may enquire about its index $[\mathbb{Q} : \mathbb{Q}_{P}]$ and its quotient group $\mathbb{Q}/\mathbb{Q}_{P}$.

> * \star

Overview

Parity

Density

Dvadics

CW+SB Trees

 \mathbb{Q}_{P} is a (normal) subgroup of \mathbb{Q} .

We may enquire about its index $[\mathbb{Q} : \mathbb{Q}_P]$ and its quotient group \mathbb{Q}/\mathbb{Q}_P .

* * *

Somewhat out of context, we mention that all three parity classes, \mathbb{Q}_E , \mathbb{Q}_O and \mathbb{Q}_N , are (topologically) dense in the rationals.

Overview

CW+SB Trees

Outline

Overview

Three-Way Parity of the Rationals

Density of subsets of $\mathbb N$

2-Adic Valuation and Dyadic Rationals

The Calkin-Wilf & Stern-Brocot Trees

Conclusion

Overview

Parity

Density

Dyadics

CW+SB Trees

rees

2-Adic Valuation

"All multiples of 2 are even, but some are more even than others."

The *p*-adic valuation of an integer *n* is

$$u_{p}(n) = egin{cases} \max\{k \in \mathbb{N} : p^{k} \mid n\} & ext{for } n
eq 0 \ \infty & ext{for } n = 0 \end{cases}$$

This is extended to the rational numbers m/n:

$$u_p\left(\frac{m}{n}\right) = \nu_p(m) - \nu_p(n).$$

We shall be concerned exclusively with the case p = 2. We note that

 $\mathbb{Q}_{\mathrm{P}} = \{q \in \mathbb{Q} :
u_2(q) \geqslant 0\}$ and $\mathbb{Q}_{\mathrm{E}} = \{q \in \mathbb{Q} :
u_2(q) > 0\}$

Overview

Partitioning \mathbb{Q}

For *q* rational with parity *even*, $\nu_2(q) > 0$, For *q* rational with parity *odd*, $\nu_2(q) = 0$, For *q* rational with parity *none*, $\nu_2(q) < 0$.

For all $k \in \mathbb{Z}$, we define

 $Q_k = \{q \in \mathbb{Q} : \nu_2(q) = k\}$ and $Q_\infty = \{0\}.$

The resulting partition yields a rich algebraic structure. The union of all the *Q*-sets comprises the rationals:

$$\mathbb{Q} = \{ 0 \} \uplus \biguplus_{k=-\infty}^{\infty} Q_k.$$

Overview

Dyadics

CW+SB Trees

Dyadic Rational Numbers A dyadic rational is a fraction whose denominator is a power of two. We define

 $D_k = \{2^k(2\ell-1): \ell \in \mathbb{Z}\}$ and $D_{\infty} = \{0\},$

and note that $\mathbb{D} = \biguplus_k D_k \uplus D_\infty$.

The dyadic rational numbers form a ring between the ring of integers and the field of rational numbers:

 $\mathbb{Z}\trianglelefteq\mathbb{D}\trianglelefteq\mathbb{Q}\,.$

We construct a countable infinity of subgroups of \mathbb{D} :

$$\mathbb{D}_{\mathcal{K}} := \{ \mathbf{0} \} \uplus \biguplus_{k \ge \mathcal{K}} D_k.$$

Particular cases include

 $\mathbb{D}_{-\infty} = \mathbb{D} \,, \quad \mathbb{D}_{-1} = \frac{1}{2}\mathbb{Z} \,, \quad \mathbb{D}_0 = \mathbb{Z} \,, \quad \mathbb{D}_1 = \mathbb{Z}_E \,, \quad \mathbb{D}_\infty = \{ 0 \}^{\text{definition}}$

Overview

Parity

Density

Dyadics

CW+SB Trees

Figure: Partition of the rational numbers. The vertical axis is the 2-adic valuation ν_2 . D_k indicated by marked points. Totality of these comprises dyadic rationals \mathbb{D} .

Overview

Parity

Density

Dyadics

CW+SB Trees

Figure: Partition of the rational numbers. The vertical axis is $\mu = 2^{\nu_2}$. D_k indicated by marked points. Totality of these comprises dyadic rationals \mathbb{D} .

Overview

Parity

Density

Dvadics

CW+SB Trees

Cosets of \mathbb{Q}_{P} in \mathbb{Q} .

For each k > 0, we define a set of values

 $q_k^\ell = 2^{-k}(2\ell - 1) \in Q_{-k}$ for $\ell = 1, 2, 3, \dots, 2^{k-1}$.

These are the first 2^{k-1} positive values in D_{-k} .

We prove that these are representatives of 2^{k-1} cosets, which are all distinct and which provide a disjoint partition of Q_{-k} .

The cosets of \mathbb{Q}_{P} in \mathbb{Q} are

$$q_k^\ell + \mathbb{Q}_P, \qquad \ell = 1, 2, 3, \dots 2^{k-1}, \quad k = 1, 2, \dots$$

Dyadics

CW+SB Trees

Density of Q_k : **Heuristic Discussion** The set $Q_{-1} = \frac{1}{2} + \mathbb{Q}_P$ is a coset of \mathbb{Q}_P . It can be visualized as a copy of \mathbb{Q}_P shifted by a distance $\frac{1}{2}$.

We argue heuristically that Q_{-1} is "as dense as \mathbb{Q}_{P} ".

More generally, for any k,

$$\frac{1}{2^k}\left(\frac{2m+1}{2n+1}\right)\in Q_k\longleftrightarrow \frac{1}{2^{k-1}}\left(\frac{2m+1}{2n+1}\right)\in Q_{k-1}\,.$$

Dvadics

 Q_{k-1} is a compressed version of Q_k .

Since Q_{k-1} is "twice as dense as Q_k ", we should have twice as many cosets in Q_{k-1} as in Q_k .

This has been proved rigorously.

Densitv

Parity

Conclusion

CW+SB Trees

Overview

Outline

Overview

Three-Way Parity of the Rationals

Density of subsets of $\mathbb N$

2-Adic Valuation and Dyadic Rationals

The Calkin-Wilf & Stern-Brocot Trees

Conclusion

Overview

Parity

Density

Dyadics

CW+SB Trees

S

The Calkin-Wilf Tree

The Calkin-Wilf tree is an enumeration of O.

The Calkin-Wilf tree is complete:

- It includes all the rationals:
- Each positive rational occurs just once.

Everything springs from the root 1/1.

Each rational has two "children": for the entry m/n, the children are m/(m+n) and (m+n)/n.

Overview

Dvadics

CW+SB Trees

The Calkin-Wilf Tree

Figure: The initial rows of the Calkin-Wilf tree.

Overview

Parity

Density

Dyadics

CW+SB Trees

Calkin-Wilf Parity Transfer

If each of the parity classes, even, odd and none, occurs with equal frequency at one generation, then this equality is passed on to the next generation:

$$\rho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{E}}) = \rho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{O}}) = \rho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{N}}) = \frac{1}{3}.$$

Overview

Dyadics

CW+SB Trees

Stern-Brocot Tree

The Stern-Brocot tree is another ordering of \mathbb{Q} , very similar to the Calkin-Wilf tree.

The numbers at each level are formed from the mediants of adjacent pairs of numbers above.

The mediant of two rationals m_1/n_1 and m_2/n_2 is

$$M\left(\frac{m_1}{n_1}, \frac{m_2}{n_2}\right) := \frac{m_1 + m_2}{n_1 + n_2}$$

Overview

Parity

Density

Dyadics

CW+SB Trees

Stern-Brocot Tree

Figure: The initial rows of the Stern-Brocot tree.

Overview

Parity

Density

Dvadics

CW+SB Trees

Density for the Stern-Brocot Tree

The parity of the mediants of two numbers of different parity is the third parity:

*

Density

M(e, o) = n, M(o, n) = e, M(n, e) = o.

From this, we can show for the Stern-Brocot tree:

$$ho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{E}})=
ho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{O}})=
ho_{\mathbb{Q}}(\mathbb{Q}_{\mathrm{N}})=rac{1}{3}$$
 .

Dvadics

Conclusion

CW+SB Trees

Overview

Parity

Density for the Stern-Brocot Tree

The parity of the mediants of two numbers of different parity is the third parity:

M(e, o) = n, M(o, n) = e, M(n, e) = o.

From this, we can show for the Stern-Brocot tree:

$$ho_\mathbb{Q}(\mathbb{Q}_\mathrm{E})=
ho_\mathbb{Q}(\mathbb{Q}_\mathrm{O})=
ho_\mathbb{Q}(\mathbb{Q}_\mathrm{N})=rac{1}{3}$$
 .

The determination of the densities of parity classes for the ordering corresponding to the Farey sequences is left as a challenge!

*

Overview

Density

Dvadics

CW+SB Trees

Outline

Conclusion

Overview

Parity

Densitv

Dvadics

CW+SB Trees

Acknowledgments

We are grateful for helpful comments from: **Prof Tom Laffey (UCD)** Prof Tony O'Farrell (NUIM)

Overview

Parity

Densitv

Dvadics

CW+SB Trees

Summary

- We have extended parity from \mathbb{Z} to \mathbb{Q} .
- Three parity classes were found.
- ► The even and odd rationals, Q_E and Q_O, follow the usual rules of parity.
- ► The union of these, Q_P = Q_E ⊎ Q_O, forms an additive subgroup of Q.
- Using the 2-adic valuation, we partitioned Q into subsets and found a chain of subgroups.
- Using the natural density, we showed that the three parity classes are equally dense in the rationals for both the CW-Tree and the SB-Tree.

Overview

Density

Dyadics

CW+SB Trees