The Prehistory of Numerical Weather Prediction: Some Austrian Contributions

Peter Lynch School of Mathematics & Statistics University College Dublin

150th Anniversary of the Österreichische Gesellschaft für Meteorologie Innsbruck, 2 September 2015

Outline

Max Margules

Felix Exner

Lewis Fry Richardson

Forecast Factory

Margules

Exner

Richardson

Outline

Max Margules

Felix Exner

Lewis Fry Richardson

Forecast Factory

Margules

Exner

Richardson

1904: A Fateful Year

The year 1904 was pivotal for NWP:

- Max Margules demonstrated that weather prediction was fraught with danger.
- Felix Exner attempted an actual calculation of the atmospheric changes.
- Vilhelm Bjerknes' announced his program for rational weather forecasting.

Max Margules (1856–1920)

In 1904, Margules published a paper in the *Festschrift* marking the sixtieth birthday of his former teacher, the renowned physicist Ludwig Boltzmann:

Über die Beziehung zwischen Barometerschwankungen und Kontinuitätsgleichung.

Margules' Approach

- Margules considered the possibility of predicting pressure changes using the <u>continuity equation</u>.
- He showed that, to obtain an accurate estimate of the pressure tendency, the winds would have to be known to an impractically high accuracy.
- So forecasting synoptic changes by this means was doomed to failure.

Margules conclusion:

Weather forecasting is *"immoral and damaging* to the character of a meteorologist" (Quote: Fortak, 2001).

Tendency from Continuity Equation

- Region around Innsbruck.
- Square of side 15km.
- Like a cell of an atmospheric model.

Richardson

A Box of Air over Innsbruck

Influx equals Outflow: Pressure unchanged.

Influx exceeds Outflow: Pressure will rise.

	KO1	00	
ма			

Richardson

Pressure Tendency

Assume a westerly wind over Innsbruck

$$u > 0$$
, $v = 0$.

Assume the surface pressure is initially 1000 hPa.

Using <u>Conservation of Mass</u>, a simple calculation yields the following <u>amazing result</u>:

- ► If the speed on the western side exceeds that on the east by 1 m/s, then ∂p_S/∂t ≈ 7 Pa/s.
- If this influx continues, the pressure will double in about 4 hours.

Pressure Tendency

Assume a westerly wind over Innsbruck

$$u > 0$$
, $v = 0$.

Assume the surface pressure is initially 1000 hPa.

Using <u>Conservation of Mass</u>, a simple calculation yields the following <u>amazing result</u>:

- ► If the speed on the western side exceeds that on the east by 1 m/s, then ∂p_S/∂t ≈ 7 Pa/s.
- If this influx continues, the pressure will double in about 4 hours.

We must apply the continuity equation with great care!

Richardson

Outline

Max Margules

Felix Exner

Lewis Fry Richardson

Forecast Factory

Margules

Exner

Richardson

Felix Maria Exner (1876–1930)

Exner

First attempt to calculate synoptic changes using physical principles.

Exner's method radically different from Bjerknes'.

He did *not* make direct use of the continuity equation.

His method used a system reduced to the essentials.

Exner's Method

- Exner assumed that the atmospheric flow is geostrophically balanced and that the thermal forcing is constant in time.
- He deduced mean zonal wind from temperature.
- He then derived a prediction equation representing advection of the pressure pattern.
- His method yielded a realistic forecast.

Exner's Forecast

Calculated Pressure Change between 8pm and 12pm on 3 January, 1895. Hundreths of an inch. [*Steigt*=rises; *Fällt*=falls].

Margules

Exner

Richardson

Verification

Observed Pressure Change between 8pm and 12pm on 3 January, 1895. Hundreths of an inch. [*Steigt*=rises; *Fällt*=falls].

Margules

Exner

Richardson

Richardson's Reaction

Exner's work deserves attention as a first attempt at systematic, scientific weather forecasting.

The only reference by Richardson to the method was a single sentence in his book *Weather Prediction by Numerical Process* (p. 43):

"F. M. Exner has published a prognostic method based on the source of air supply."

It would appear from this that Richardson was not particularly impressed by it!

 \star

As we shall shortly see:

 Exner's forecast was unspectacular but reasonable.

Richardson

As we shall shortly see:

 Exner's forecast was unspectacular but reasonable.

whereas

 Richardson's forecast was spectacularly unreasonable.

Pioneers of Scientific Forecasting

Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson

NЛ	2	20		2	~	
		I L	11		-	

Exner

Richardson

Cleveland Abbe

By 1890, the American meteorologist Cleveland Abbe had recognized that:

Meteorology is essentially the application of hydrodynamics and thermodynamics to the atmosphere.

Abbe proposed a mathematical approach to forecasting.

Vilhelm Bjerknes

A more explicit analysis of weather prediction was undertaken by the Norwegian scientist Vilhelm Bjerknes

He identified the two crucial components of a scientific forecasting system:

- Analysis
- Integration

Bjerknes' 1904 Manifesto

Objective: To establish a science of meteorology

Purpose: To predict future states of the atmosphere.

Necessary and sufficient conditions for the solution of the forecasting problem:

1. A knowledge of the initial state

2. A knowledge of the physical laws

Step (1) is Diagnostic. Step (2) is Prognostic.

Richardson

Outline

Max Margules

Felix Exner

Lewis Fry Richardson

Forecast Factory

Margules

Exner

Richardson

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a practical reality.

Today, forecasts are prepared routinely using his methods ...

... his dream has indeed come true.

Richardson

Lewis Fry Richardson, 1881–1953.

During WWI, Richardson computed by hand the pressure change at a single point.

It took him two years !

Margules

Richardson

Lewis Fry Richardson, 1881–1953.

During WWI, Richardson computed by hand the pressure change at a single point.

It took him two years !

His 'forecast' was a catastrophic failure:

$\Delta p =$ 145 hPa in 6 hrs

But Richardson's method was scientifically sound.

Margules

Exner

Richardson

Initialization of Richardson's Forecast

Richardson's Forecast was repeated on a computer.

The atmospheric observations for 20 May, 1910, *were recovered from original sources.*

Richardson

Initialization of Richardson's Forecast

Richardson's Forecast was repeated on a computer.

The atmospheric observations for 20 May, 1910, *were recovered from original sources*.

 ► ORIGINAL: $\frac{\partial p_s}{\partial t} = +145 \, hPa/6 \, h^2$
► INITIALIZED: $\frac{\partial p_s}{\partial t} = -0.9 \, hPa/6 \, h^2$

Observations: The barometer was steady!

Full Account of the Forecast

The Emergence of Numerical Weather Prediction Richardson's Dream

Richardson's Forecast and the Emergence of NWP are described in this book.

[Cambridge Univ. Press, 2006]

Margules

Richardson

Outline

Max Margules

Felix Exner

Lewis Fry Richardson

Forecast Factory

Margules

Exner

Richardson

Richardson's Forecast Factory

© Stephen Conlin, 1986

Margules

Richardson

Zoom: Richardson Directing the Forecast

Lewis Fry Richardson conducting the forecast

Margules

Zoom: Historical Figures in Computing

Napier / Babbage / Pascal / Peurbach

Margules

Exner

Richardson

Georg von Peuerbach (1423–1461)

Austrian astronomer, mathematician and instrument maker, best known for his *Theoricae Novae Planetarum.*

Richardson

Zoom: Communications & Computing

Left: Tube Room. Right: Computer Laboratory

Margules

Exner

Richardson

Zoom: Experimentation & Research

Left: Dish Pan. Right

Right: Analytical Engine

Exner

Richardson

Richardson's Forecast Factory

64,000 Computers: the first Massively Parallel Processor

Margules

The Fantastic Forecast Factory

An Artist's Impression of Richardson's Fantastic Forecast Factory

Peter Lynch

School of Mathematics and Statistics, University College Dublin.

Description to appear in Weather magazine.

Preprint available on my website

Image to feature soon on the website of the European Meteorological Society

Richardson

Thank you

Margules

Exne

Richardson