The Emergence of NWP Fulfilment of a Dream & Realization of a Fantasy

Peter Lynch School of Mathematics & Statistics University College Dublin

IoP, London, 23 January 2020

Outline

Pioneers of NWP: The Dream

The Dynamical Core

ENIAC Integrations

ECMWF System

NWP Today & Tomorrow

Forecast Factory: The Fantasy

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

A Recent Paper in Nature

Note International weekly journal of science Home News & Comment Research Careers & Jobs Current Issue	Archive
Archive Volume 525 $ ightarrow$ Issue 7567 $ ightarrow$ Reviews $ ightarrow$ Article	
NATURE REVIEW 日本語要約	<
The quiet revolution of numerical weather prediction	
Peter Bauer, Alan Thorpe & Gilbert Brunet	

The Origins of Numerical Weather Prediction

Nature, 3 September 2015 Vol 525 pg. 47

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

The Quiet Revolution of NWP [Abstract]

- Advances in NWP represent a quiet revolution.
- Steady accumulation of technological advances.
- Among the greatest impacts of physical science.
- NWP is a computational problem comparable to:
 - Modelling the behaviour of the human brain.
 - Simulating the evolution of the early universe.

The Quiet Revolution of NWP [Abstract]

- Advances in NWP represent a quiet revolution.
- Steady accumulation of technological advances.
- Among the greatest impacts of physical science.
- NWP is a computational problem comparable to:
 - Modelling the behaviour of the human brain.
 - Simulating the evolution of the early universe.
- Performed daily at operational weather centres.

Factory

ECMWF

Today/Tomorrow

Outline

Pioneers of NWP: The Dream

- The Dynamical Core
- **ENIAC Integrations**
- **ECMWF System**
- **NWP Today & Tomorrow**

Forecast Factory: The Fantasy

Stokes

ENIAC

ECMWF

Today/Tomorrow

Pioneers of Scientific Forecasting

Cleveland Abbe

By 1890, the American meteorologist Cleveland Abbe had recognized that:

Meteorology is essentially the application of hydrodynamics and thermodynamics to the atmosphere.

Abbe proposed a mathematical approach to forecasting.

Pioneers

Stokes

ENIA

ECMWF

Т

Today/Tomorrow

Vilhelm Bjerknes

A more explicit analysis of weather prediction was undertaken by the Norwegian scientist Vilhelm Bjerknes

He identified the two crucial components of a scientific forecasting system:

- Analysis
- Integration

Pioneers

ECMWF

Today/Tomorrow

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a reality 'one day in the distant future'.

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a reality 'one day in the distant future'.

Today, forecasts are prepared routinely using his method ... his dream has indeed come true.

Factory

Pioneers

ECMWF

Today/Tomorrow

w

Lewis Fry Richardson, 1881–1953.

During WWI, Richardson computed by hand the pressure change at a single point.

It took him two years !

Pioneers

Stokes

FNIAC

FCMWF

Today/Tomorrow

Lewis Fry Richardson, 1881–1953.

During WWI, Richardson computed by hand the pressure change at a single point.

It took him two years !

His 'forecast' was a catastrophic failure:

 $\Delta p =$ 145 hPa in 6 hrs

Pioneers

Stokes

ECMWF

VF

Today/Tomorrow

Lewis Fry Richardson, 1881–1953.

During WWI, Richardson computed by hand the pressure change at a single point.

It took him two years !

His 'forecast' was a catastrophic failure:

 $\Delta p = 145$ hPa in 6 hrs

Yet, Richardson's method was scientifically sound.

Pioneers

FCMWF

Today/Tomorrow

Initialization of Richardson's Forecast

Richardson's Forecast has been re-run on a computer.

The atmospheric observations for 20 May 1910 were recovered from original sources.

• ORIGINAL:
$$rac{\partial oldsymbol{\mathcal{P}_s}}{\partial t} = +$$
145 hPa/6 h

Factory

Pioneers

Today/Tomorrow

Initialization of Richardson's Forecast

Richardson's Forecast has been re-run on a computer.

The atmospheric observations for 20 May 1910 were recovered from original sources.

► ORIGINAL:

$$\frac{\partial p_s}{\partial t} = +145 \, hPa/6 \, h$$

 ► INITIALIZED:
 $\frac{\partial p_s}{\partial t} = -0.9 \, hPa/6 \, h$

Observations: The barometer was steady!

Pioneers

ECMWF

Today/Tomorrow

Outline

- The Dynamical Core

Pioneers

Stokes

FCMWF

Today/Tomorrow

Weather and Climate Models

Computer models for simulating weather and climate are known as Earth System Models.

They are of great complexity.

At the heart of every model is a Dynamical Core.

At the kernel of the core lie the Navier-Stokes Equations.

Factory

Pioneers

Stokes

ECMWF

Today/Tomorrow

w

George Gabriel Stokes

G. G. Stokes was born in Skreen, Co. Sligo, just 200 years ago.

His equations for fluid flow underlie all atmospheric and ocean models.

$$\frac{\partial \boldsymbol{V}}{\partial t} + \boldsymbol{V} \cdot \boldsymbol{\nabla} \boldsymbol{V} = -\frac{1}{\rho} \boldsymbol{\nabla} \boldsymbol{\rho} + \nu \nabla^2 \boldsymbol{V} - \boldsymbol{g}$$

Pioneers

Stokes

FCMWF

Today/Tomorrow

Outline

Pioneers of NWP: The Dream

The Dynamical Core

ENIAC Integrations

ECMWF System

NWP Today & Tomorrow

Forecast Factory: The Fantasy

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

Crucial Advances, 1920–1950

Dynamic Meteorology

- Quasi-geostrophic Theory
- Numerical Analysis
 - CFL Criterion
- Atmopsheric Observations
 - Radiosondes
- Electronic Computing
 - ENIAC

The ENIAC

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

The ENIAC

The ENIAC was the first multipurpose programmable electronic digital computer:

- 18,000 vacuum tubes
- ► 70,000 resistors
- 10,000 capacitors
- ▶ 6,000 switches
- Power: 140 kWatts

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

von Neumann Charney Fjørtoft

Numerical integration of the barotropic vorticity equation Tellus, 2, 237-254 (1950).

Pioneers

Stokes

ENIAC

FCMWF

Today/Tomorrow

Charney, et al., Tellus, 1950.

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity $\zeta + f$ is conserved.

$$\frac{\mathsf{d}(\zeta+\mathsf{f})}{\mathsf{d}\mathsf{t}}=\mathsf{0}.$$

Pioneers

Stokes

FNIAC

FCMWF

Today/Tomorrow

The ENIAC Algorithm: Flow-chart

Factory

Pioneers

Stokes

ENIAC

FCMWF

Today/Tomorrow

ENIAC Forecast for Jan 5, 1949

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

NWP Operations

The Joint Numerical Weather Prediction Unit was established on July 1, 1954:

- Air Weather Service of US Air Force
- The US Weather Bureau
- The Naval Weather Service.

May 1955: Operational numerical weather forecasting using a 3-level quasi-geostrophic model.

Pioneers

Stokes

ENIAC

ECMWF

*

-

Today/Tomorrow

Outline

Pioneers of NWP: The Dream

- The Dynamical Core
- **ENIAC Integrations**
- **ECMWF System**

NWP Today & Tomorrow

Forecast Factory: The Fantasy

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

European Centre for Medium-Range Weather Forecasts (ECMWF, Reading, UK)

Pioneers

Stokes

ENIA

Today/Tomorrow

Forecast of Hurricane Sandy

Figure : Landfall, New Jersey, 30 October 2012

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

Resolution of the IFS System

Growth in Forecast Skill

Figure : Anomaly correlation of 500 hPa geopotential height

Pioneers

ECMWF

Today/Tomorrow

Outline

Pioneers of NWP: The Dream

- The Dynamical Core
- **ENIAC Integrations**
- **ECMWF System**

NWP Today & Tomorrow

Forecast Factory: The Fantasy

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

Reasons for Progress in Weather Forecasting

- Faster computers;
- Better numerical schemes;
- Enhancements in model resolution;
- New observational data from satellites;
- More comprehensive physical processes;
- Paradigm shift to probabilistic forecasting;
- More sophisticated methods of data assimilation.

Factory

Today/Tomorrow

Physical Processes in the Atmosphere

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

The Equations of the Atmosphere

THERMODYNAMIC EQUATION

EQUATIONS OF MOTION: Navier-Stokes Equations

CONTINUITY EQUATION

WATER SUBSTANCE EQUATION

Pioneers

Stokes

EN

ECMWF

Tod

Today/Tomorrow

The Primitive Equations

 $\frac{du}{dt} - \left(f + \frac{u \tan \phi}{a}\right)v + \frac{1}{\rho}\frac{\partial p}{\partial x} + F_x = 0$ $\frac{dv}{dt} + \left(f + \frac{u \tan \phi}{a}\right)u + \frac{1}{\rho}\frac{\partial p}{\partial v} + F_y = 0$ $\frac{\partial p}{\partial z} + g\rho = 0$ $p = R_{\rho}T$ $\frac{dT}{dt} + (\gamma - 1)T\nabla \cdot \mathbf{V} = \frac{Q}{C_{\rm p}}$ $\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = \mathbf{0}$ $\frac{\partial \rho_{w}}{\partial t} + \nabla \cdot \rho_{w} \mathbf{V} = [\mathbf{Sources} - \mathbf{Sinks}]$

Pioneers

ECMWF

Today/Tomorrow

Scientific Forecasting in a Nut-Shell

- The atmosphere is a physical system
- Its behaviour is governed by the laws of physics
- These laws are expressed quantitatively in the form of mathematical equations
- Using observations, we can specify the atmospheric state at a given initial time: "Today's Weather"
- Using the equations, we can calculate how this state will change over time: "Tomorrow's Weather"

Scientific Forecasting in a Nut-Shell

Problems:

- The equations are very complicated (non-linear): Powerful computer required to solve them.
- The accuracy decreases as the range increases; There is an inherent limit of predictibility.

Factory

Pioneers

Future Progress

- ► Faster computers ⇒ Increased model resolution.
- More complex computer architecture Smarter parallelisation algorithms.
- New observational data from satellites More advanced methods of data assimilation.
- More comprehensive physical processes.
- More comprehensive chemical processes.
- Greater emphasis on probabilistic forecasting.

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

orrow

Outline

Pioneers of NWP: The Dream

- **The Dynamical Core**
- **ENIAC Integrations**
- **ECMWF System**

NWP Today & Tomorrow

Forecast Factory: The Fantasy

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

Richardson's Forecast Factory

© Stephen Conlin, 1986

Stokes

ENIAC

Today/Tomorrow

Zoom: Richardson Directing the Forecast

Lewis Fry Richardson conducting the forecast

Factory

Pioneers

Stokes

ENIAC

ECMWF

Today/Tomorrow

orrow

Zoom: Historical Figures in Computing

Napier / Babbage / Pascal / Peurbach

Pioneers

Stokes

ENIAC

ECMW

Today/Tomorrow

Zoom: Experimentation & Research

Babbage's Analytical Engine Kelvin on left. Boole on right.

Factory

Pioneers

Stokes

ENIAC

ECMW

Today/Tomorrow

Richardson's Forecast Factory

64,000 Computers: the first Massively Parallel Processor

Pioneers

ENIAC

ECMWF

Today/Tomorrow

The Fantastic Forecast Factory

The North Atlantic Ocean and climate change Pen portrait of P. A. Sheppard Richardson's fantastic forecast factory Missing the expected in the Cairngorms

An Artist's Impression of **Richardson's Fantastic Forecast Factory.** Weather, 71, 14-18.

[Reprint on my website]

High-res Image on my website.

[http://maths.ucd.ie/~plynch]

Pioneers

Stokes

FCMWF

Today/Tomorrow

Thank you

Pioneers

Sto

Eľ

ECM\

Today/Tomorrow

Growth in Forecast Skill

Figure : Anomaly correlation of 500 hPa geopotential height

Factory

Pioneers

ECMWF

Today/Tomorrow