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Magnums and Subsets of N
The aim of this work is to define a number

m(A)

for subsets A of N that corresponds to our
intuition about the size or magnitude of A.

We call m(A) the magnum of A.

Magnum = Magnitude Number

“C’est par la logique qu’on démontre,
c’est par l’intuition qu’on invente.”

It is by logic that we prove, but by intuition that we discover [Poincaré].
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Galileo Galilei (1564–1642)

Every number n can be
matched with its square n2.

In a sense, there are
as many squares
as whole numbers.
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Georg Cantor (1845–1918)

Cantor discovered many remarkable
properties of infinite sets.
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Georg Cantor (1845–1918)

I Invented Set Theory.
I One-to-one Correspondence.
I Infinite and Well-ordered Sets.
I Cardinals and Ordinals.
I Proved card(Q) = card(N).
I Proved card(R) > card(N).
I Hierarchy of Infinities.
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Set Theory: Controversy

Cantor was strongly criticized by
I Henri Poincaré.
I Leopold Kronecker.
I Ludwig Wittgenstein.

Set Theory is a “grave disease” (HP).
Cantor is a “corrupter of youth” (LK).
“Nonsense; laughable; wrong!” (LW).
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Set Theory: A Difficult Birth

Set Theory brought into prominence
several paradoxical results.

It was so innovative that many mathematicians could
not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it
in his Acta Mathematica. He said the work was
“100 years ahead of its time”.

David Hilbert said:
“We shall not be expelled from the
paradise that Cantor has created for us.”
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Equality of Set Size: 1-1 Correspondence

How do we show that two sets are the same size?

For finite sets, this is straightforward counting.

For infinite sets, we must find a 1-1 correspondence.
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Infinite Sets
Now we consider sets that are infinite.

We take the natural numbers and the even numbers

N = {1,2,3, ...}

E = {2,4,6, ...}

By associating each number n ∈ N with 2n ∈ E,
we have a perfect 1-to-1 correspondence.

By Cantor’s argument, the two sets are the same size:

card[N] = card[E]
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Again,
card[N] = card[E]

But this is paradoxical: The set of natural numbers
contains all the even numbers

E $ N .

But N also contains all the odd numbers.

In an intuitive sense, N is larger than E.
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Ordinal Numbers

Ordinal Numbers are used to describe
the order type of well-ordered sets.

An ordinal may be defined as the set of ordinals
that precede it. Thus 27 is the set {0,1,2, . . . ,26}.

The smallest infinite ordinal is ω, the order
type of the set of natural numbers N.

Indeed, ω can be identified with the set N.

After ω come ω + 1, ω + 2, . . . , ω · 2.
Then ω ·m + n and on to ω2, ω3, . . . , ωω.
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Diagram of Ordinals up to ω2

Figure: Each ‘matchstick’ is an ordinal ω ·m + n.
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Von Neumann’s Definition
Each ordinal number is the well-ordered
set of all smaller ordinal numbers.

For von Neumann, the successor of α is α ∪ {α}.

Ernst Zermelo had used a slightly different (equivlent) definition of ordinals.
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A World from Empty Bags
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The Burali-Forti Paradox

The class of ordinal numbers is not a set.

If it were a set, it would be a member of itself,
contradicting the strict ordering by membership.

Bertrand Russell noticed the contradiction. In 1903
he discussed it in his Principles of Mathematics.

The proper class of ordinals is variously denoted as

Ord or ON or ∞
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Arithmetic on the Ordinals

Every well-ordered set has an ordinal number.

For infinite sets, there are many possible orderings:

ord({1,2,3,4, . . . }) = ω while ord({2,3,4, . . . ,1}) = ω+1

The ordinals are non-commutative:

1 + ω 6= ω + 1

Worse still, 1 + ω = ω. One is tempted
to subtract ω to get 1 = 0.

Not a good basis for a calculus of transfinites.
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Richard Dedekind (1831–1916)
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Irrational Numbers

Richard Dedekind defined irrational numbers
by means of cuts of the rational numbers Q.

For example,
√

2 is defined as (L,R), where

L = {All rationals less than
√

2}
R = {All rationals greater than

√
2}

More precisely, and avoiding self-reference,

L = {x ∈ Q | x < 0 or x2 < 2}
R = {x ∈ Q | x > 0 and x2 > 2}
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Irrational Numbers

For each irrational number there
is a corresponding cut (L,R).

We can regard the cut as
equivalent to the number.

There are rules to manipulate
cuts that are equivalent to the
arithmetical rules for numbers.

The surreal numbers are based upon a
dramatic generalization of Dedekind’s cuts.
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John H. Conway’s ONAG
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Donald Knuth’s Surreal Numbers
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Constructing the Surreals

The Surreal numbers S are constructed inductively.

I Every number x is defined by a pair
of sets, the left set and the right set:

x = { L | R }

I No element of L is greater than
or equal to any element of R.

x is the simplest number between L and R.
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Constructing the Surreals
We start with 0, defined as

0 = {∅ | ∅} = { { } | { } } = { | }

Then 1, 2, 3 and so on are defined as

{ 0 | } = 1 { 1 | } = 2 { 2 | } = 3 . . .

Negative numbers are defined inductively as

−x = {−R | − L }

so that

{ | 0 } = −1 { | − 1 } = −2 { | − 2 } = −3 . . .
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Constructing the Surreals

Dyadic fractions (of the form m/2n) appear as

{ 0 | 1 } = 1
2 { 1 | 2 } = 3

2 { 0 | 1
2 } = 1

4 { 1
2 | 1 } = 3

4 . . .

After an infinite number of stages,
all the dyadic fractions have emerged.

At the next stage, all other real numbers appear.

Infinite and infinitesimal numbers also appear.

Intro Cantor Ordinals SN Magnums Defs Odd/Even Theorems Analysis Finis



Surreal Numbers

Figure: Surreal network from 0 to the first infinite number ω.
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The First Infinite Number

The first infinite number ω is defined as

ω = {0,1,2,3, . . . | }

We can also introduce

ω + 1 = {0,1,2, . . . ω| } , ω − 1 = {0,1,2, . . . |ω}

2ω = {0,1,2, . . . ω, ω+1, . . . | } 1
2ω = {0,1,2, . . . |ω, ω−1, . . . }

and many other more exotic numbers.
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Figure: Network of early infinite and infinitesimal numbers.
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Manipulating Infinite Numbers

The surreal numbers behave beautifully:
The class S is a totally ordered Field.

We can define quantities like

ω2 ωω
√
ω logω

and many even stranger numbers.
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The First Infinitesimal Number ε = 1/ω

On day ω, the number ε = 1/ω appears.

It can be shown that
ω

ω
= ω × ε = 1

Since we are interested in subsets of N, we will
consider surreals less than or equal to ω.
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Closing Lines of Knuth’s Book
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Books about Surreal Numbers
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BACKGROUND

Cardinality is a blunt instrument:
The natural numbers, rationals and algebraic
numbers all have the same cardinality.

So, ℵ0 fails to discriminate between them.

Our aim is to define a number m(A) for subsets
A of N that corresponds to our intuition about
the size or magnitude of A.

We define m(A) as a surreal number.
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Desiderata

I For a finite subset A we have m(A) = card(A)

I For a proper subset A of B we have

A $ B =⇒ m(A) < m(B) .

I For the odd and even natural numbers

NO = {1,3,5, . . . } =⇒ m(NO) ≈ 1
2m(N)

NE = {2,4,6, . . . } =⇒ m(NE ) ≈ 1
2m(N)
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The Goal: A Genetic Definition

The ultimate aim is to construct a
genetic definition of the magnum.

That is, for a given A ⊂ N, to define
two sets, LA and RA such that

m(A) = { LA | RA }

We have not been able to do this yet.
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Difficulties with Limits

In ONAG (page 43), Conway states that we cannot
assume the limit of the sequence (1,2,3, . . . ) is ω.

We cannot conclude that m(N) = ω.
Therefore, we will write m(N) = $.

The precise specification of $ as a surreal
number in the form { L | R } remains to be done.
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Euler’s Number

The usual definition of Euler’s number is

e = lim
n→∞

f (n) , where f (n) =

(
1 +

1
n

)n

.

Evaluating f (n) for n = $ we obtain a surreal number

e$ = f ($) =

(
1 +

1
$

)$

which is not equal to e.
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Extending Functions from R to S

The extension of many functions from R to S
can be done without difficulty.

f : x 7→ x2 , x ∈ R to f : x 7→ x2 , x ∈ S

so we have f ($) = $2 and so on.

This is fine for polynomials, rational functions,
the logarithm and trigonometric functions.
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Some Examples

f (n) =

(
n − 1

n

)
= 1− 1

n
so f ($) = 1− 1

$

The value of f ($) may not be defined in all cases:

f (n) = (−1)n extends to f ($) = (−1)$

and it is not clear what the value of this should be.

We introduce the notation

Λ ≡ (−1)$

without (yet) defining the value to be assigned to Λ.
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Numerical Examples

For the real numbers, 0.999 · · · = 1.
For the surreals, this is not the case:

f (n) = 0.999 . . . 9︸ ︷︷ ︸
n terms

= 1−10−n , so f ($) = 1−10−$ < 1 .

Many more examples could be given, such as

0.142857 =
142,857

1,000,000
[
1 + 10−6 + 10−12 + . . .

]
=

1
7
[
1− 10−6$] .
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Counting Sequence
We define the characteristic function of A ⊂ N by

χA(n) =

{
1, n ∈ A
0, otherwise

We assume that a1 < a2 < a3 < · · · < an < . . . .

Definition

We define the counting sequence κA to be the sequence
of partial sums of the sequence {χA(n)}:

κA(n) =
n∑

k=1

χA(k)

Clearly, κ(n) ≤ n and κA(n) counts the number
of elements of A less than or equal to n.
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The Magnum of A

Definition

If κA(x) is defined for x = $, the magnum of A ⊂ N is

m(A) = κA($)

Note that the magnum is a surreal number.

If A is a finite set, m(A) is just card(A).
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Principal Part of m(A)

We denote by M(A) the infinite part of m(A).

We write m(A) in its normal form. Then

m(A) = M(A)︸ ︷︷ ︸
Infinite

+
(
m(A)−M(A)

)︸ ︷︷ ︸
Finite

This can be done in a canonical manner.

To compute the magnum, we write

κA(n) = πA(n) +
(
κA(n)− πA(n)

)
Then M(A) = πA($) (if this exists).

Intro Cantor Ordinals SN Magnums Defs Odd/Even Theorems Analysis Finis



A Set without a Magnum
Let U be the set of natural numbers
with an odd number of decimal digits.

χU(n) =

{
1 if n has an odd number of decimal digits ,
0 if n has an even number of decimal digits .

If the density of U is ρU(n) = κU(n)/n then

ρU(1) = 0.0
ρU(10) = 0.9
ρU(100) = 0.09
ρU(1000) = 0.909
ρU(10000) = 0.0909
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Intuition about Sizes

How do we ‘know’ that NE is half the size of N.

We do not. But we have a ‘feeling’ about it.

Why?

For any large but finite N, about half the numbers
less than N are odd and about half are even.
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The Odd Numbers
The characteristic sequence for the odd numbers is

χO(n) = (1,0,1,0,1,0, . . . )

and the counting sequence for the odd numbers is

κO(n) = (1,1,2,2,3,3, . . . )

We can write χO(n) and κO(n) as

χO(n) =
1− (−1)n

2
and κO(n) = 1

2

[
n +

1− (−1)n

2

]
Evaluating the counting function at $ we get

m(NO) = κO($) =
$

2
+

1
4

[1− (−1)$] =
$

2
+

1
4
− Λ

4
.
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The Even Numbers
We repeat this procedure for the even numbers.

χE (n) = (0,1,0,1,0,1, . . . )

κE (n) = (0,1,1,2,2,3, . . . )

We can write these sequences as

χE (n) =
1 + (−1)n

2
and κE (n) = 1

2

[
n − 1− (−1)n

2

]
Evaluating the counting function at $ we get

m(NE ) = κE ($) =
$

2
− 1

4
[1− (−1)$] =

$

2
− 1

4
+

Λ

4
.
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All Together

m(NO) =
$

2
+

1
4
− Λ

4

m(NE ) =
$

2
− 1

4
+

Λ

4

Assuming $ is an ‘even number’ Λ = (−1)$ = 1 so

m(NO) =
$

2
m(NE ) =

$

2

Since NE and NO are disjoint and NE ·∪ NO = N,
it is refreshing to observe that

m(NO) + m(NE ) = $ = m(N) .
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Zeros at the Beginning
Theorem: Suppose the set A has magnum m(A).
Then the shifted sequence B defined by

χB(1) = 0 , χB(n) = χA(n − 1) , n > 1

has magnum

m(B) = m(A)− χA($) .

Corollary: If the sequence B is shifted from A
by k places, we have

m(B) = m(A)−
k∑

j=1

χA($ + 1− j)
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General Arithmetic Sequence

Theorem: The magnum of the arithmetic sequence
A = {a,a + d ,a + 2d ,a + 3d , . . . } is

m(A) =
$

d
+

(
d + 1− 2a

2d

)
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Squares of Natural Numbers
We now consider the set of squares of natural
numbers S = {1,4,9,16, . . . }. The characteristic
sequence is

χS(n) = (1, 0,0︸︷︷︸
2 zeros

; 1,0,0,0,0︸ ︷︷ ︸
4 zeros

; 1,0,0,0,0,0,0︸ ︷︷ ︸
6 zeros

; 1, . . . )

and the sequence of partial sums of this sequence is

κ(n) = (1,1,1︸ ︷︷ ︸
3 terms

,2,2,2,2,2︸ ︷︷ ︸
5 terms

,3,3,3,3,3,3,3︸ ︷︷ ︸
7 terms

, . . . )

Theorem: The magnum of the sequence of squares is

m(S) =
√
$ − 1

2 + HOT .
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General Geometric Sequence

We now consider the general geometric sequence

G = {βr , βr 2, βr 3, . . . }

Theorem: The magnum of the geometric sequence
G = {βr , βr 2, βr 3 . . . } is

m(G) =
ln$
ln r
−
(

ln β
ln r

+
1
2

)
.
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Analysis on S. Paper of RSS
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Analysis on S

This paper [RSS] attempts to extend the application
of surreals to functions, limits, derivatives, power
series and integrals.

I A new definition of surreal numbers.
I A formula for the limit of a sequence.
I Characterization of convergent sequences.
I A new topology on S.
I An Intermediate Value Theorem proved

(even though S is not Cauchy complete).
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Background

The arithmetic and algebraic properties
of S are now well understood:

I Harry Gonshor found a definition of exp(x).
I Martin Kruskal found a definition of 1/x .
I Clive Bach found a definition of

√
x .

Analysis on S is the next big step.
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Notation and Basic Properties
I S<a is the class of surreals less than a.
I S>a is the class of surreals greater than a.

Representations of the form { L | R }, where
L and R are sets, are known as genetic formulae.

Ordinals are numbers of the form { L | }.
The right hand set is empty!

Every surreal x can be uniquely expressed in
normal form as a sum over ordinals:

x =
∑

i∈S<β

ri · ωyi

ri are real numbers and yi a decreasing sequence.
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Gaps

The surreal number line is riddled with gaps.
Gaps are Dedekind sections on S.

All gaps are born on day On.

The Dedekind completion of S, denoted SD

contains all numbers and gaps.

Noteworthy gaps include
I On = {S| }, the gap larger than all surreals
I Off = −On, the gap smaller than all surreals
I ∞ = {neg. and finite pos. nums. | inf. pos. nums.}

A sequence is of length On if its elements are
indexed over the proper class of ordinals On.
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Open Sets. Topology

RSS define open sets:
I The empty set is open
I A nonempty subinterval of S is open if

I It has endpoints in S ∪ {On,Off}
I It does not contain its endpoints.

I A subclass A ⊂ S is open if it is a union of open
intervals Ai indexed over a proper set I.

This definition produces a topology on S.

Now we can define limits and continuity for f : a→ S.
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Sequences and Limits

For any formula { L | R } for the limit of an On-length
sequence at least one of L and R is a proper class.

Since this is not a number as defined by Conway,
a new definition is needed.

Definition: For any x ∈ SD, the Dedekind
representation of x is {S<x |S>x}.

All the usual properties of S still hold.
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Limits of sequences and functions are now
defined as certain Dedekind representations.

They are equivalent to the usual ε-δ definitions
for sequences or functions that approach numbers.
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Derivatives and Integrals

Limits are defined generically as numbers (or gaps):

{ Left Class | Right Class }.

Derivatives can be evaluated using the definitions.

A genetic definition or Dedekind representation
of Riemann integration is still outstanding.
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Open Questions

RSS provide a list of open issues that includes:

I Sums of general series.
I Genetic formula for definite integrals.
I Definitions of other transcendental functions.
I Theory of differential equations.
I Surreal version of Stokes’ Theorem.
I Genetic definition of the magnum.
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Opportunities

Many open challenges in analysis on S.

May be crucial in physics.

Good projects for students.
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Thank you
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