The Origins of Computer Weather and Climate Prediction Fulfilment of Richardson's Dream

Peter Lynch School of Mathematics & Statistics University College Dublin

 *
 *

 Imperial College London, 30 May 2022

EPSRC Centre for Doctoral Training

Imperial College London

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Intro

Richardson

Margules

es

Peace

NWP Today

Outline

Introduction

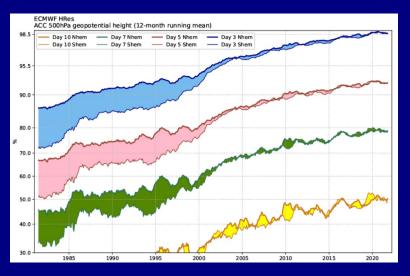
- **Pioneers of NWP: The Dream**
- Lewis Fry Richardson
- **Max Margules**
- **Richardson's Peace Studies**
- **NWP Today**

Forecast Factory: The Fantasy

Intro

Pioneers

Richardson


M

Margules

Peace

NWP Today

Forecast Skill: Onward and Upward

ECMWF Forecast Skill over 40 Years

Intro

Richardson

Pioneers


Margules

s

Peace

NWP Today

Forecast Skill: Onward and Upward

ECMWF Forecast Skill over 40 Years

Intro

Richardson

Pioneers

Margules

Peace

NWP Today

A Recent Review of NWP Progress

The quiet revolution of numerical weather prediction

Peter Bauer, Alan Thorpe & Gilbert Brunet

Nature, 3 September 2015 Vol 525 p.47 < □ > < □ > < □ > < □ > <

Intro

Pioneers

Richardson

Margules

Peace

NWP Today

The Quiet Revolution of NWP [Abstract]

- Steady accumulation of scientific knowledge.
- Steady accumulation of technological advances.

Advance in skill of NWP is among the greatest impacts of physical science in the 20th Century.

The Quiet Revolution of NWP [Abstract]

- Steady accumulation of scientific knowledge.
- Steady accumulation of technological advances.

Advance in skill of NWP is among the greatest impacts of physical science in the 20th Century.

NWP is a computational problem comparable to:

- Modelling the behaviour of the human brain.
- Simulating the evolution of the early universe.

Performed every day at major operational centres.

Factory

Intro

Margules

Peace

NWP Today

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Intro

Pioneers

Richardson

Ν

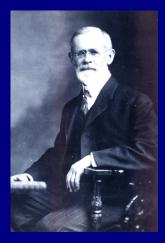
Margules

Peace

NWP Today

Pioneers of Scientific Forecasting

Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson


ער <u>ו</u>

Richardson

Margules

Peace

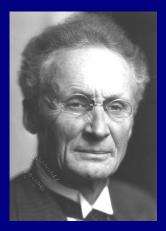
NWP Today

Cleveland Abbe

By 1890, the American meteorologist Cleveland Abbe had recognized that:

Meteorology is essentially the application of hydrodynamics and thermodynamics to the atmosphere.

Abbe proposed a mathematical approach to forecasting.


Intro

Richardson

Margules

Peace

NWP Today

Vilhelm Bjerknes

A more explicit analysis of weather prediction was undertaken by the Norwegian scientist Vilhelm Bjerknes

He identified the two crucial components of a scientific forecasting system:

- Analysis
- Integration

Factory

Margules

Peace

NWP Today

To establish a science of meteorology, with the aim of predicting future states of the atmosphere.

"If it is true, as every scientist believes, that subsequent atmospheric states develop from the preceeding ones according to physical law, then it is apparent that the necessary and sufficient conditions for the rational solution of forecasting problems are the following:

Intro

Margules

Peace

NWP Today

- 1. A sufficiently accurate knowledge of the *state* of the atmosphere at the initial time.
- 2. A sufficiently accurate knowledge of the *laws* according to which one state of the atmosphere develops from another."
 - Step (1) is Diagnostic.
 - Step (2) is Prognostic.

Intro

Richardson

Margules

Peace

NWP Today

Vilhelm Bjerknes (1862–1951)

Intro

Pioneers

ardson

Margules

Peace

NWP Today

Outline

Lewis Fry Richardson

NWP Todav

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a reality "one day in the distant future."

Intro

Richardson

Margules

Peace

NWP Today

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a reality "one day in the distant future."

Today, forecasts are prepared routinely using his method ... his dream has indeed come true.

Intro

Richardson

Margules

Peace

NWP Today

Richardson's Dream

In *Weather Prediction by Numerical Process* (1922), Richardson wrote the following:

Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to the information gained.

But that is a dream.

Factory

Intro

Peace

Weather Prediction by Numerical Process

WEATHER PREDICTION RY NUMERICAL PROCESS LEWIS F. RICHARDSON, B.A., F.R.MET.Soc., F.ISST.P. CAMBRIDGE AT THE UNIVERSITY PRESS

WPNP published by Cambridge University Press in 1922...

... just one hundred years ago!

Intro

Pioneers

Richardson

Margules

Peace

NWP Today

Weather Prediction by Numerical Process

- Mathematical method for predicting the weather.
- Richardson's ideas were fundamentally sound.
- His methodology is essentially that used today.
- But, his method was utterly impractical.
- His trial forecast was little short of outlandish.

Richardson's ideas were eclipsed for decades and his wonderful opus gathered dust and was forgotten.

Margules

Peace

Factory

NWP Todav

Intro

Pioneers

Richardson

The Origin of Richardson's Method

LFR first applied his approximate method for the solution of differential equations to investigate the stresses in masonry dams.

But the method was completely general and he realized that it had potential for use in a wide range of problems governed by PDEs.

In a letter to Karl Pearson (c. 1910), he wrote that 'there should be applications to meteorology'. This is the first inkling of his interest in weather prediction.

LFR began serious work on the problem in 1913, when LFR was S'visor at Eskdalemuir Observatory.

Intro

Margules

Peace

ce

NWP Today

Eskdalemuir Office & Computing Room (1911)

Intro

Pioneers

Richardson

Margules

Pe

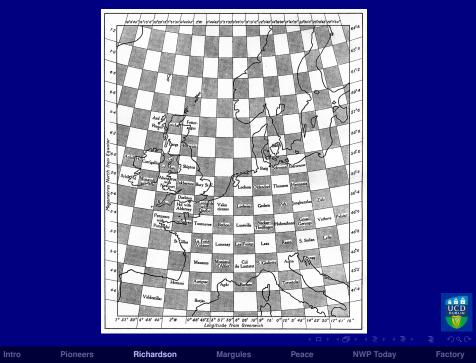
Peace

NWP Today

The Method described in WPNP

- Initial state specified by pressure, temperature, density, humidity and wind fields.
- Changes described by seven differential equations.
- Atmosphere divided into discrete columns of extent 3° east-west and 200 km north-south.
- 12,000 columns covered the globe.
- Each column divided vertically into five cells.
- Equations expressed in finite difference form.

Changes calculated by arithmetical means.



Intro

Margules

Peace

NWP Today

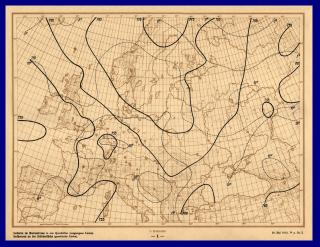
The Sample Forecast

Forecast was worked out in France in rest periods between transporting wounded soldiers in WWI.

Richardson calculated the *initial changes in two columns* over central Europe.

The extent of his 'forecast': 20 numbers.

If Richardson spent ten hours per week at his chore it must have occupied him for about two years.



Intro

Peace

NWP Today

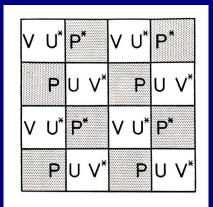
The Leipzig Charts for 0700 UTC, May 20, 1910

Bjerknes' sea level pressure analysis.

Intro

Pioneers

Richardson


Mar

Margules

Peace

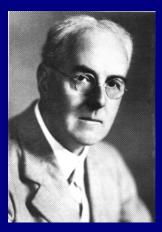
e

NWP Today

Richardson Grid (also called an Arakawa E-grid)

Intro

Pioneers


Richardson

Margules

Peace

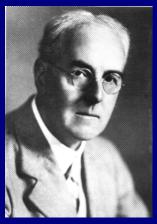
NWP Today

Lewis Fry Richardson, 1881–1953.

Richardson computed by hand the pressure change at a single point.

It took him two years !

Intro


Richardson

Margules

Peace

NWP Today

Lewis Fry Richardson, 1881–1953.

Richardson computed by hand the pressure change at a single point.

It took him two years !

His 'forecast' was a catastrophic failure:

 $\Delta p =$ 145 hPa in 6 hrs

But Richardson's method was scientifically sound.

Pioneers

Richardson

Margules

Peace

NWP Today

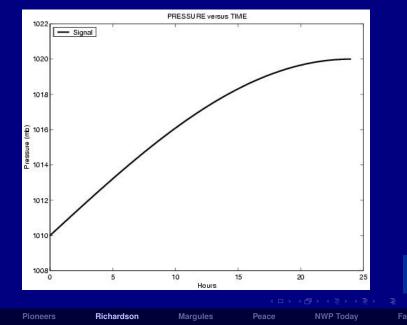
The problem

Richardson used computed tendencies to deduce the long-term change.

With a time step of six hours, he obtained the unacceptable value

 $\Delta p =$ 145 hPa in 6 hrs

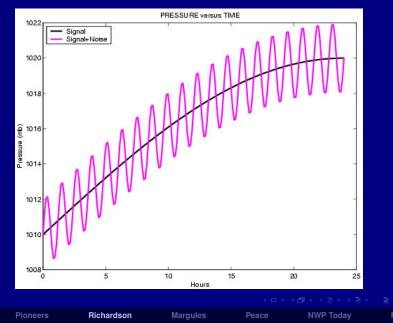
Problem: the instantaneous pressure tendency does not reflect the long-term change.



Intro

Peace

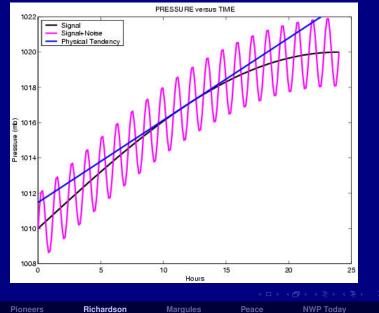
NWP Today


A Smooth Signal

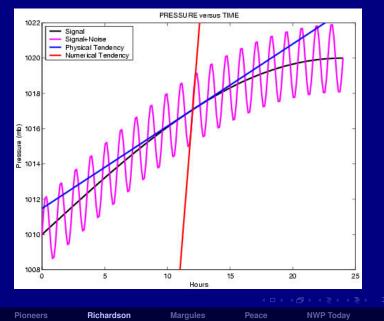
÷ 🕯 🕯

Intro

A Noisy Signal



**


ICD

Intro

Tendency of a Smooth Signal

Tendency of a Noisy Signal

Intro

Possible Solutions

Small time steps are required to represent rapid variations:

 Combine many time steps short enough to simulate high frequency variations accurately.

Intro

Margules

Peace

NWP Today

Possible Solutions

Small time steps are required to represent rapid variations:

 Combine many time steps short enough to simulate high frequency variations accurately.

Equations include high-frequency oscillations:

Filter HF Solutions from the Equations.

Intro

Margules

Peace

NWP Todav

Possible Solutions

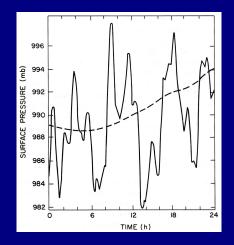
Small time steps are required to represent rapid variations:

 Combine many time steps short enough to simulate high frequency variations accurately.

Equations include high-frequency oscillations:Filter HF Solutions from the Equations.

Data errors induce spurious HF components:

Adjust the initial data to eliminate the HF waves.
 Richardson devoted a chapter of WPNP to smoothing!


Intro

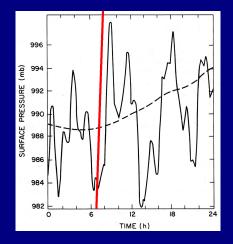
Margules

Peace

N

NWP Today

Evolution of surface pressure before and after initialiation. (Williamson and Temperton, 1981)


Pioneers

Richardson

Margules

Peace

NWP Today

Evolution of surface pressure before and after initialiation. Red line: 24 hPa/hr or 144 hPa/6 hr.

Factory

Intro

Pioneers

Richardson

Margules

Peace

NWP Today

Initialization of Richardson's Forecast

Richardson's Forecast was repeated on a computer.

The atmospheric observations for 20 May, 1910, *were recovered from original sources*.

► ORIGINAL:

$$\frac{\partial p_s}{\partial t} = +145 \,\mathrm{hPa}/6 \,\mathrm{h}$$

Intro

Margules

Peace

NWP Today

Initialization of Richardson's Forecast

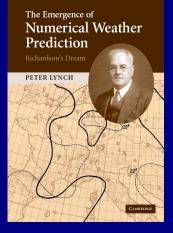
Richardson's Forecast was repeated on a computer.

The atmospheric observations for 20 May, 1910, *were recovered from original sources*.

 ▶ ORIGINAL: $\frac{\partial p_s}{\partial t} = +145 \, hPa/6 \, h$
 ▶ INITIALIZED: $\frac{\partial p_s}{\partial t} = -0.9 \, hPa/6 \, h$

Observations: The barometer was steady!

Factory


Richardson

Margules

Peace

NWP Today

Full Account of the Forecast

Richardson's Forecast and the Emergence of NWP are described in this book.

Cambridge Univ. Press, 2006

[Available in paperback form]

Richardson

Margules

Peace

NWP Todav

Richardson's Forecast Factory

© François Schuiten

64,000 Computers: the first Massively Parallel Processor

Intro

Richardson

Ma

Margules

Peace

NWP Today

Weather Prediction by Numerical Process

WEATHER PREDICTION RY NUMERICAL PROCESS LEWIS F. RICHARDSON, B.A., F.R.MET.Soc., F.ISST.P. CAMBRIDGE AT THE UNIVERSITY PRESS

WPNP published by Cambridge University Press in 1922...

... just one hundred years ago!

Intro

Pioneers

Richardson

Margules

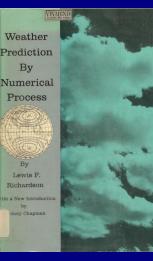
Peace

NWP Today

Weather Prediction by Numerical Process

- Published by Cambridge University Press, one hundred years ago, in 1922.
- The price was 30 shillings (£1.50)
- The print run was 750 copies.
- Akira Kasahara bought a copy in 1955, more than thirty years after publication.
- Re-issued in 1965 as a Dover paperback and the 3,000 copies (price \$2) sold out within a decade.
- CUP published "Second Edition" in 2007.

Intro


Richardson

Margules

Peace

NWP Today

WPNP Dover and Second Editions

Weather Prediction by Numerical Process

Second Edition

Lewis Fry Richardson

Cambridge Mathematical Library

Intro

Pioneers

Richardson

Margules

Peace

NWP Today

Table 1.1 Chapter titles of Weather Prediction by Numerical Process.

Chapter 1	Summary		
Chapter 2	Introductory Example		
Chapter 3	The Choice of Coordinate Differences		
Chapter 4	The Fundamental Equations		
Chapter 5	Finding the Vertical Velocity		
Chapter 6	Special Treatment for the Stratosphere		
Chapter 7	The Arrangement of Points and Instants		
Chapter 8	Review of Operations in Sequence		
Chapter 9	An Example Worked on Computing Forms		
Chapter 10	Smoothing the Initial Data		
Chapter 11	Some Remaining Problems		
Chapter 12	Units and Notation		

Intro

Richardson

Margules

Peace

се

Fa

NWP Today

Dunguia	Momentum Equations	11	
Dynamics	Momentum Equations	10	
	Vertical Velocity		
	The Stratosphere	24	15
	Total Dynamics		45
Numerics	Finite Differences	12	
	Numerical Algorithm	25	
	Total Numerics		37
	Dynamics + Numerics		82
Physics	Clouds and Water	12	
	Energy and Entropy	8	
	Radiation	19	
	Turbulence	36	
	Surface, Soil, Sea	23	
	Total Physics		98
Miscellaneous	Summary	3	
	Initial Data	7	
	Analysis of Results	5	
	Smoothing	3	
	Forecast Factory	1	
	Computing Forms	23	
	Notation and Index	14	
	Total Miscellaneous		56
Total Pages			236
		< E	
neers F	Richardson Margules	Peace	NWP Toda

The Initial Response

Reviews were generally favourable:

- "A strikingly original scientific work"
- "One of the most remarkable books on meteorology ever written."
- Sydney Chapman: "the enterprise contemplated in this book is of almost quixotic boldness".
- Edgar W. Woolard, U.S. Weather Bureau: "It is to be hoped that the author will continue his excellent work along these lines ... and that others will follow."

Intro

Peace

е

NWP Today

The Initial Response

However, not all reviews were so positive:

- Napier Shaw: "the wildest guess at the pressure change would not have been wider of the mark."
- Alexander McAdie, Harvard: The book "will probably be quickly placed on a library shelf ... to rest undisturbed."

Intro

Pioneers

on

Margules

Peace

NWP Today

Whipple's Review

A perceptive review by F. J. W. Whipple, Met Office came closest to explaining Richardson's unrealistic forecast, postulating that rapidly-travelling waves contributed to its failure.

"The trouble that he meets is that quite small discrepancies in the estimate of the strengths of the winds may lead to comparatively large errors in the computed changes of pressure."

Whipple appears to have had a clear understanding of the causes of Richardson's forecast catastrophe.

Intro

Peace

NWP Today

Aftermath

Richardson's work was not taken seriously

His book failed to have any significant impact on the practice of meteorology for decades

Intro

Margules

Peace

NWP Today

Aftermath

Richardson's work was not taken seriously

His book failed to have any significant impact on the practice of meteorology for decades

But finally ...

... Richardson's brilliant and prescient ideas are now universally recognised and his work is the foundation upon which modern forecasting is built.

Intro

Margules

Peace

NWP Today

av

Met Office Website

Pioneers

Richardson

Margules

Peace

1915 Nov 24 LFR

An early version of Richardson's gridded map

Intro

Richardson

n

irgules

Peace

oday

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Intro

Pioneers

Richardson

Ν

Margules

Peace

NWP Today

1904: A Fateful Year

The year 1904 was pivotal for NWP:

- Vilhelm Bjerknes' announced his program for rational weather forecasting.
- Felix Exner attempted an actual calculation of the atmospheric changes.
- Max Margules demonstrated that weather prediction was fraught with danger.

Intro

Margules

es

Peace

NWP Today

Max Margules (1856–1920)

In 1904, Margules published a paper in the *Festschrift* marking the sixtieth birthday of his former teacher, the renowned physicist Ludwig Boltzmann:

Über die Beziehung zwischen Barometerschwankungen und Kontinuitätsgleichung.

Intro

Pioneers

Richardson

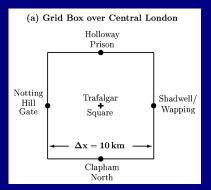
Margules

Peace

NWP Today

Margules' Approach

- Margules considered the possibility of predicting pressure changes using the <u>continuity equation</u>.
- He showed that, to obtain an accurate estimate of the pressure tendency, the winds would have to be known to an impractically high accuracy.
- So forecasting synoptic changes by this means was doomed to failure.


Margules conclusion:

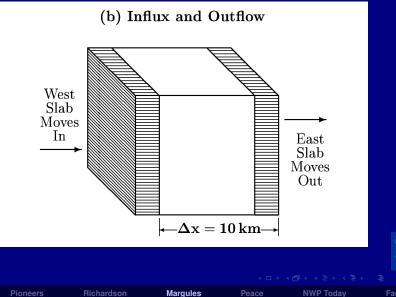
Weather forecasting is *"immoral and damaging* to the character of a meteorologist" (Quote: Fortak, 2001).

Peace

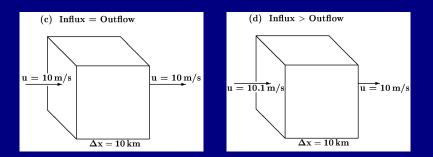
Tendency from Continuity Equation

- Square of side 10 km over Central London.
- Like a cell of an atmospheric model.

Intro


Richardson

Margules


Peace

NWP Today

"What Flows In Must Flow Out?"

A Box of Air over London

Influx equals Outflow: Pressure unchanged.

Influx exceeds Outflow: Pressure will rise.

Intro

Richardson

Margules

Peace

NWP Today

Pressure Tendency

Assume a westerly wind over London

$$u > 0$$
, $v = 0$.

Assume the surface pressure is initially 1000 hPa.

Using <u>Conservation of Mass</u>, a simple calculation yields the following <u>amazing result</u>:

- ► If the speed on the western side *exceeds* that on the east by 0.1 m/s, then ∂p_S/∂t ≈ 1 Pa/s.
- If this influx continues, the pressure will double in a day.

Intro

Peace

NWP Today

Pressure Tendency

Assume a westerly wind over London

$$u > 0$$
, $v = 0$.

Assume the surface pressure is initially 1000 hPa.

Using <u>Conservation of Mass</u>, a simple calculation yields the following <u>amazing result</u>:

- ▶ If the speed on the western side *exceeds* that on the east by 0.1 m/s, then $\partial p_S / \partial t \approx 1$ Pa/s.
- If this influx continues, the pressure will double in a day.

We must use the continuity equation with great care!

Intro

Pioneers

Peace

NWP Today

Richardson and Margules

Margules sent a copy of his 1904 paper to the Met Office. His results showed that LFR's approach was doomed from the outset.

Richardson ascribed the difficulties with his predicted tendency to spurious divergence values.

It seems that Richardson was unaware of Margules' paper. He makes no reference to it.

Had Richardson been aware Margules' results, he might have decided not to proceed with his forecast.

Later, LFR proposed using the vertical component of vorticity as a primary variable.

Intro

Margules

les

Peace

NWP Today

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Intro

Pioneers

Richardson

Margules

Peace

NWP Today

Digression: Peace Studies

- Richardson retired early to devote all his energies to peace studies.
- His mathematical analysis of the causes of war were ahead of their time.
- His seminal work was Arms and Insecurity.
- In a letter to Nature he posed the question: "Must an arms race necessarily lead to warfare?"
- In 1985, Oliver Ashford wrote: "Let us hope that before long history will show that an arms race can indeed end without fighting."

1

Margules

Peace

NWP Today

Digression: Peace Studies

- Richardson retired early to devote all his energies to peace studies.
- His mathematical analysis of the causes of war were ahead of their time.
- His seminal work was Arms and Insecurity.
- In a letter to *Nature* he posed the question: "Must an arms race necessarily lead to warfare?"
- In 1985, Oliver Ashford wrote: "Let us hope that before long history will show that an arms race can indeed end without fighting."
- Four years later the collapse of the Soviet Union brought the nuclear arms race to an abrupt end.

Observation of Henry Stommel (1985)

Intro

n

Margules

Peace

NWP Today

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Intro

Pioneers

Richardson

N

Margules

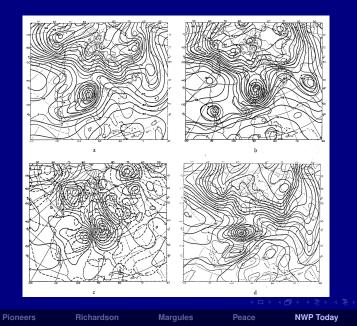
Peace

NWP Today

Crucial Advances, 1920–1950

Dynamic Meteorology

- Quasi-geostrophic Theory
- Numerical Analysis
 - CFL Criterion
- Atmopsheric Observations
 - Radiosondes
- Electronic Computing
 - ENIAC


Intro

Margules

Peace

NWP Today

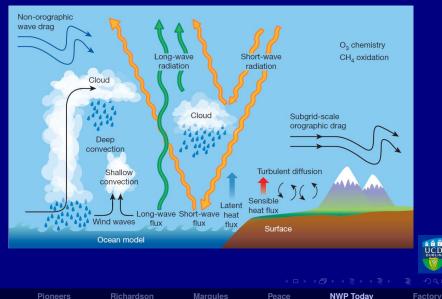
ENIAC Forecast for Jan 5, 1949

Intro

Weather and Climate Models

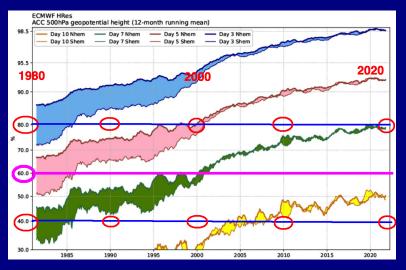
- Computer models for simulating weather and climate are known as Earth System Models.
- They are of great complexity.
- At the heart of every model is a Dynamical Core.
- At the kernel of the core lie the Navier-Stokes Equations.

Intro


Richardson

Margules

Peace


NWP Today

Physical Processes in the Atmosphere

ntro

Forecast Skill: Onward and Upward

ECMWF Forecast Skill over 40 Years

Intro

Pioneers

Richardson

M

Margules

Peace

NWP Today

Reasons for Progress in Weather Forecasting

- Faster computers;
- Better numerical schemes;
- Enhancements in model resolution;
- New observational data from satellites;
- More comprehensive physical processes;
- Paradigm shift to probabilistic forecasting;
- More sophisticated methods of data assimilation.

Outline

Introduction

Pioneers of NWP: The Dream

Lewis Fry Richardson

Max Margules

Richardson's Peace Studies

NWP Today

Forecast Factory: The Fantasy

Factory

Intro

Margules

Peace

NWP Today

Richardson's Forecast Factory

© Stephen Conlin, 1986

Intro

Pioneers

Richardson

Margules

Peace

е

NWP Today

Zoom: Richardson Directing the Forecast

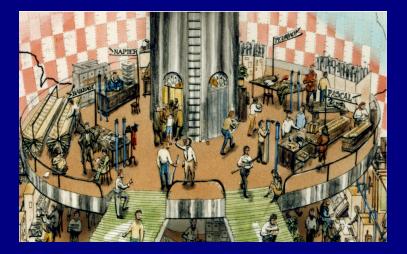
Lewis Fry Richardson conducting the forecast

Factory

Intro

Pioneers

Richardson


Margules

Peace

ce

NWP Today

Zoom: Historical Figures in Computing

Napier / Babbage / Pascal / Peurbach

Intro

Pioneers

Richardson

Ma

Margules

Peace

NWP Today

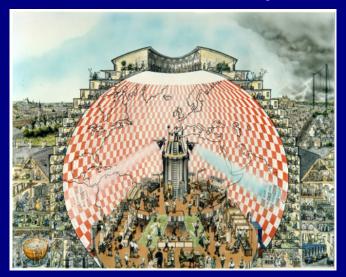
Zoom: Experimentation & Research

Babbage's Analytical Engine Kelvin on left. Boole on right.

Intro

Pioneers

Richardson


Margules

Peace

ce

NWP Today

Richardson's Forecast Factory

64,000 Computers: the first Massively Parallel Processor

Intro


Pioneers

Margules

Peace

NWP Today

The Fantastic Forecast Factory

The North Atlantic Ocean and climate change Pen portrait of P. A. Sheppard Richardson's fantastic forecast factory Missing the expected in the Cairngorms An Artist's Impression of Richardson's Fantastic Forecast Factory. Weather, 71, 14–18.

[Reprint on my website]

High-res Image with Zoom on website of European Meteorological Society:

http://www.emetsoc.org/

Intro

Pioneers

Richardson

Margules

Peace

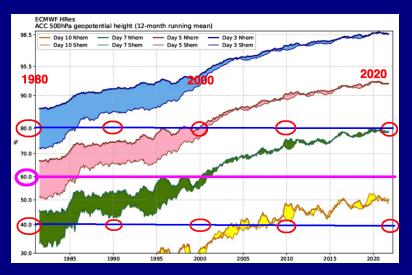
е

NWP Today

Thank you

eers

hardson


Margules

Peace

ice

oday

Forecast Skill: Onward and Upward

Anomaly correlation of 500 hPa geopotential height

Intro

Pioneers F

Richardson

Margules

Peace

NWP Today

