## Numerical Integration using Laplace Transforms

Peter Lynch School of Mathematical Sciences University College Dublin

Centenary of the Royal Meteorological Institute of Belgium September 26-27 2013







#### LT Scheme

#### Prehistory





**Prehistory of NWP** 

**ENIAC Integrations** 

Laplace Transform Scheme



Prehistory



#### Outline

**Prehistory of NWP** 

**ENIAC Integrations** 

Laplace Transform Scheme



Prehistory



## Aristotle's Meteorologia

#### Aristotle wrote the first book on Meteorology, the $M\epsilon\tau\epsilon\omega\rhoo\lambda o\gamma\iota\alpha$ ( $\mu\epsilon\tau\epsilon\omega\rhoo\nu$ : Something in the air).

This work studied the causes of various weather phenomena.



Aristotle (384-322 BC)







## Galileo Galilei (1564–1642)

Galileo formulated the basic law of falling bodies, which he verified by careful measurements.

He constructed a telescope, with which he studied lunar craters, and discovered four moons revolving around Jupiter.

Galileo is credited with the invention of the Thermometer.

Thus began quantitative meteorology.





IT Scheme

### Galileo's Star Student

Evangelista Torricelli (1608–1647), a student of Galileo, devised the first accurate barometer.

The link between pressure and the weather was soon noticed.



Torricelli inventing the barometer



#### Prehistory

### Pascal and Puy de Dome









Prehistory

#### **Newton's Law of Motion**



The <u>rate of change of momentum</u> of a body is equal to the <u>sum of the forces</u> acting on the body:

**Force = Mass × Acceleration** 



《曰》《聞》《臣》《臣》 '臣''

Prehistory

#### A Tricky Question If Astronomers can make accurate long-range forecasts, why can't Meteorologists do the same?



Prehistory



## **A Tricky Question**

If Astronomers can make accurate long-range forecasts, why can't Meteorologists do the same?

#### Size of the Problem

Cometary motion is a relatively simple problem, with few degrees of freedom; Dynamics is enough.

The atmosphere is a continuum with infinitely many variables;

Thermodynamics is essential.

#### Order versus Chaos

The equations of the solar system are quasi-integrable and the motion is regular. The equations of the atmosphere are essentially nonlinear and the motion is chaotic.



## Leonhard Euler (1707–1783)

- Born in Basel in 1707.
- Died 1783 in St Petersburg.
- Formulated the equations for incompressible, inviscid fluid flow:
   ∂V/∂t + V · ∇V + 1/ρ∇p = g.
   ∇ · V = 0





#### Prehistory

### **The Navier-Stokes Equations**

**Euler's Equations:** 

$$rac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot 
abla \mathbf{V} + rac{1}{
ho} 
abla p = \mathbf{g}^{\star}$$
 .

**The Navier-Stokes Equations** 

$$\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + \frac{1}{\rho} \nabla \rho = \nu \nabla^2 \mathbf{V} + \mathbf{g}^{\star}.$$

Motion on the rotating Earth:

$$\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + 2\Omega \times \mathbf{V} + \frac{1}{\rho} \nabla \rho = \nu \nabla^2 \mathbf{V} + \mathbf{g}$$



Prehistory

### The Inventors of Thermodynamics





#### Prehistory

## The Equations of the Atmosphere

GAS LAW (Boyle's Law and Charles' Law.) Relates the pressure, temperature and density **CONTINUITY EQUATION** Conservation of mass WATER CONTINUITY EQUATION Conservation of water (liquid, solid and gas) EQUATIONS OF MOTION: Navier-Stokes Equations Describe how the change of velocity is determined by the pressure gradient, Coriolis force and friction THERMODYNAMIC EQUATION Determines changes of temperature due to heating or cooling, compression or rarefaction, etc.

Seven equations; seven variables  $(u, v, w, \rho, p, T, q)$ .



Prehistory

### Scientific Forecasting in a Nut-Shell

- The atmosphere is a physical system
- Its behaviour is governed by the laws of physics
- These laws are expressed quantitatively in the form of mathematical equations
- Using observations, we can specify the atmospheric state at a given initial time: "Today's Weather"
- Using the equations, we can calculate how this state will change over time: "Tomorrow's Weather"



IT Scheme

## Scientific Forecasting in a Nut-Shell

#### **Problems:**

- The equations are very complicated (non-linear) and a powerful computer is required to do the calculations
- The accuracy decreases as the range increases; there is an inherent limit of predictibility.



## **Pioneers of Scientific Forecasting**



#### Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson



Prehistory





## **Cleveland Abbe**

By 1890, the American meteorologist Cleveland Abbe had recognized that:

Meteorology is essentially the application of hydrodynamics and thermodynamics to the atmosphere.

Abbe proposed a mathematical approach to forecasting.





## Vilhelm Bjerknes

A more explicit analysis of weather prediction was undertaken by the Norwegian scientist Vilhelm Bjerknes

He identified the two crucial components of a scientific forecasting system:

- Analysis
- Integration



# Lewis Fry Richardson



The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.

He dreamed that numerical forecasting would become a practical reality.

Today, forecasts are prepared routinely using his methods ...

... his dream has indeed come true.



## Lewis Fry Richardson, 1881–1953.



During WWI, Richardson computed by hand the pressure change at a single point.

His 'forecast' was a catastrophic failure:

#### $\Delta p =$ 145 hPa in 6 hrs

But Richardson's method was scientifically sound.



Prehistory

### **Initialization of Richardson's Forecast**

Richardson's Forecast has been repeated using a modern computer.

The atmospheric observations for 20 May, 1910, *were recovered from original sources.* 

- ORIGINAL:
- ► INITIALIZED:

 $\frac{dp_s}{dt} = +145 \text{ hPa/6 h}$  $\frac{dp_s}{dt} = -0.9 \text{ hPa/6 h}$ 

**Observations: The barometer was steady!** 



IT Scheme

#### Outline

**Prehistory of NWP** 

**ENIAC Integrations** 

Laplace Transform Scheme



Prehistory



#### Crucial Advances, 1920–1950

Dynamic Meteorology

- Quasi-geostrophic Theory
- Numerical Analysis
  - CFL Criterion
- Atmopsheric Observations
  - Radiosonde
- Electronic Computing
  - ENIAC





#### **The ENIAC**





《曰》《聞》《臣》《臣》 []

Prehistory



### **The ENIAC**



The ENIAC was the first multipurpose programmable electronic digital computer. It had:

- 18,000 vacuum tubes
- ► 70,000 resistors
- 10,000 capacitors
- ▶ 6,000 switches
- Power: 140 kWatts



# Charney Fjørtoft von Neumann



# Numerical integration of the barotropic vorticity equation *Tellus*, 2, 237–254 (1950).



Prehistory



### Charney, et al., *Tellus*, 1950.

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

$$\frac{\mathsf{d}(\zeta+\mathsf{f})}{\mathsf{d}\mathsf{t}}=\mathsf{0}.$$





## The ENIAC Algorithm: Flow-chart



G. W. Platzman: The ENIAC Computations of 1950 — Gateway to Numerical Weather Prediction (BAMS, April, 1979).



Prehistory

### **ENIAC Forecast for Jan 5, 1949**





Prehistory

ENIAC

## **NWP Operations**

The Joint Numerical Weather Prediction Unit was established on July 1, 1954:

- Air Weather Service of US Air Force
- The US Weather Bureau
- The Naval Weather Service.

Operational numerical weather forecasting began in May 1955, using a 3-level quasi-geostrophic model.



IT Scheme

### **Recreating the ENIAC Forecasts**

The ENIAC integrations have been repeated using:

- ► A MATLAB program to solve the BVE
- Data from the NCEP/NCAR reanalysis



IT Scheme



## **Recreation of the Forecast**



Prehistory

ENIAC

## **Computing Time for ENIAC Runs**

- On ENIAC, a 24 hour forecast took about 24 hours computing time.
- The program ENIAC.M was run on a Sony Vaio (model VGN-TX2XP)
- The main loop of the 24-hour forecast ran in about 30 ms.
- More recently, run on a mobile phone: PHONIAC. Run time 75 ms.

Lynch, Peter, 2008: The ENIAC Forecasts: A Recreation. Bull. Amer. Met. Soc., 89, 45-55.



IT Scheme



# PHONIAC: Portable Hand Operated Numerical Integrator and Computer





(ロト・団・・ヨト・ヨ・ (日)

Prehistory



## Notices of the AMS (the other AMS!)



Cover of the September 2013 issue of Notices of the American Mathematical Society.

See also Weather, November 2008.



IT Scheme

#### Prehistory



#### Outline

**Prehistory of NWP** 

**ENIAC Integrations** 

Laplace Transform Scheme



Prehistory



#### The Laplace Transform Scheme

LT scheme developed for initialization (c. 1984)

LT scheme applied to forecasting by J. Van Isacker and W. Struylaert (c. 1985).

Published in *WMO/IUGG Symposium Proceedings*, Tokyo, 1986.



IT Scheme

#### **Some References**

- Van Isacker J and Struylaert W., 1985: Numerical Forecasting using Laplace Transforms. Publications Serie A 115. Institut Royal Meteorologique de Belgique, Brussels.
- Van Isacker J and Struylaert W. 1986: Laplace Transform applied to a baroclinic model. In Short- and Medium-Range Numerical Weather Prediction, Proceedings of IUGG NWP Symposium. Matsuno T. (ed.) Meteorol. Soc. Japan, Tokyo. 247–253.



IT Scheme

### The Laplace Transform: Definition

#### For a function of time f(t), $t \ge 0$ , the LT is defined as

$$\hat{f}(s) = \int_0^\infty e^{-st} f(t) \,\mathrm{d}t$$

Here, *s* is complex and  $\hat{f}(s)$  is a complex function of *s*.



LT Scheme

Prehistory





#### LF and HF oscillations and their transforms



Prehistory

ENIAC

### The Laplace Transform: Inversion

The inversion formula is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s.$$

where  $C_1$  is a contour in the *s*-plane.





#### Contour for inversion of Laplace Transform





#### For an integral around a closed contour,

$$f(t) = rac{1}{2\pi i} \oint_{\mathcal{C}_0} rac{lpha \exp(st)}{s - i\omega} \,\mathrm{d}s \,,$$

we can apply the residue theorem:

$$f(t) = \sum_{C_0} \left[ \text{Residues of } \left( \frac{\alpha \exp(st)}{s - i\omega} \right) \right]$$



LT Scheme

#### Prehistory



Prehistory

ENIAC

## Approximating the Contour $C^*$ We replace the circle $C^*$ by an *N*-gon $C^*_N$ :





Prehistory





#### Numerical approximation: the inverse

$$\mathcal{L}^{\star}\{\hat{f}(s)\} = rac{1}{2\pi i} \oint_{\mathcal{C}^{\star}} \exp(st) \,\hat{f}(s) \,\mathrm{d}s$$

#### is approximated by the summation

$$\mathcal{L}_N^{\star}\{\hat{f}(s)\} = \frac{1}{2\pi i} \sum_{n=1}^N \exp(s_n t) \,\hat{f}(s_n) \,\Delta s_n$$

(For details, see Clancy and Lynch, 2011a)



LT Scheme

#### Prehistory



#### Van Isacker's Inversion Formula

$$\mathcal{L}_{N}^{\star}\{\hat{f}(s)\} = \frac{1}{2\pi i} \sum_{n=1}^{N} \exp(s_{n}t) \hat{f}(s_{n}) \Delta s_{n}$$

We introduce a correction factor, and arrive at:

$$\mathcal{L}_N^{\star}\{\hat{f}(s)\} = \frac{1}{N} \sum_{n=1}^N \exp_N(s_n t) \hat{f}(s_n) s_n$$

Here  $\exp_N(z)$  is the *N*-term Taylor expansion of  $\exp(z)$ .



IT Scheme

## **A General NWP Equation**

We write the general NWP equations symbolically as

$$rac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where X(t) is the state vector at time *t*.

We apply the Laplace transform to get

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

where  $X_0$  is the initial value of X and  $N_0 = N(X_0)$  is held constant at its initial value.



Now we take  $n \Delta t$  to be the initial time:

$$(s\hat{\mathbf{X}} - \mathbf{X}^n) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}^n = \mathbf{0}$$

The solution can be written formally:

$$\hat{\mathbf{X}}(s) = (s\mathbf{I} + i\mathbf{L})^{-1} \left[\mathbf{X}^n - \frac{1}{s}\mathbf{N}^n\right]$$

We recover the filtered solution at time  $(n + 1)\Delta t$  by applying  $\mathcal{L}^*$  at time  $\Delta t$  beyond the initial time:

$$\mathbf{X}^{\star}((n+1)\Delta t) = \mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\Big|_{t=\Delta}$$

The procedure may now be iterated to produce a forecast of any length.



Prehistory

ENIAC



Quarterly Journal of the Royal Meteorological Society

Q. J. R. Meteorol. Soc. 00: 1-7 (0000)



#### Laplace transform integration of the shallow water equations. Part 1: Eulerian formulation and Kelvin waves

Colm Clancy\* and Peter Lynch School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland \*Correspondence to: School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland. E-mail: Colm.Clancy@ucd.ie

#### Laplace transform integration of the shallow water equations. Part 2: Lagrangian formulation and orographic resonance

Colm Clancy \* and Peter Lynch School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland \*Correspondence to: School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland. E-mail: Colm.Clancy@ucd.ie

24th August

PDEs On The Sphere 2010



(Clancy and Lynch, QJRMS, 137, 2011)



Relative phase errors for semi-implicit (SI) and Laplace transform (LT) schemes for Kelvin waves m = 1 and m = 5.



## Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

The general form of the equation is

$$\frac{\mathrm{D}\mathbf{X}}{\mathrm{D}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where advection is now included in the time derivative.

We *re-define* the Laplace transform to be the integral in time *along the trajectory of a fluid parcel*:

$$\hat{\mathbf{X}}(s) \equiv \int_{\mathcal{T}} e^{-st} \mathbf{X}(t) \,\mathrm{d}t$$



## **Orographic Resonance**

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.



IT Scheme

#### Initial Height (m)



ロト 4 昂 ト 4 臣 ト 4 臣 ト 9 오

ENIAC

#### SLSI: dt = 3600: Height at 24 hours



Prehistory

ENIAC

LT Scheme

\*\*

#### SLLT: dt = 3600: Height at 24 hours





ENIAC

## **Analytical Inversion**

We now consider the LT scheme with the inverse computed analytically.

This yields a filtered system. We relate it to the filtering schemes of Daley (1980).

The procedure requires <u>explicit knowledge</u> of the <u>positions of the poles</u> of the function to be inverted.

For the Eulerian model, this is simple.



### Eulerian Model: Rossby-Haurwitz (Case 6)

#### First plot:

- Reference SI scheme
- Numerical LT with N = 8, cutoff period 3 hours
- Numerical LT with N = 8, cutoff period 1 hour.

#### Second plot:

- Reference SI scheme
- Analytical LT with cutoff period 3 hours
- Analytical LT with cutoff period 1 hour.





Prehistory

ENIAC



Prehistory

ENIAC

### Conclusion

#### **Advantages**

- LT scheme effectively filters HF waves
- LT scheme more accurate than SI scheme
- LT scheme has no orographic resonance.

#### **New Results**

- Analytical LT more accurate than numerical
- Lagrangian scheme: more work needed
- Some problems remain with Coriolis terms.



IT Scheme

#### Thank you



#### Prehistory





#### Thank you



#### Prehistory



