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Aristotle’s Meteorologia

Aristotle wrote the first book on
Meteorology, the Mετεωρoλoγια
(µετεωρoν: Something in the air).

This work studied the causes of
various weather phenomena.

Aristotle (384-322 BC)
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Galileo Galilei (1564–1642)

Galileo formulated the basic law of
falling bodies, which he verified by
careful measurements.

He constructed a telescope, with
which he studied lunar craters, and
discovered four moons revolving
around Jupiter.

Galileo is credited with the invention
of the Thermometer.

Thus began quantitative meteorology.
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Galileo’s Star Student

Evangelista Torricelli
(1608–1647), a student of
Galileo, devised the first
accurate barometer.

The link between pressure
and the weather was soon
noticed.

Torricelli inventing the barometer
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Pascal and Puy de Dome

Pascal demonstrated the change of pressure with height.
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Newton’s Law of Motion

The rate of change of momentum of a body is equal
to the sum of the forces acting on the body:

Force = Mass× Acceleration
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A Tricky Question
If Astronomers can make accurate long-range
forecasts, why can’t Meteorologists do the same?

I Size of the Problem
Cometary motion is a relatively simple problem,
with few degrees of freedom;
Dynamics is enough.
The atmosphere is a continuum with infinitely many
variables;
Thermodynamics is essential.

I Order versus Chaos
The equations of the solar system are
quasi-integrable and the motion is regular.
The equations of the atmosphere are essentially
nonlinear and the motion is chaotic.
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Leonhard Euler (1707–1783)

I Born in Basel in 1707.
I Died 1783 in St Petersburg.
I Formulated the equations

for incompressible,
inviscid fluid flow:
∂V
∂t

+ V · ∇V +
1
ρ
∇p = g .

∇ · V = 0
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The Navier-Stokes Equations
Euler’s Equations:

∂V
∂t

+ V · ∇V +
1
ρ
∇p = g? .

The Navier-Stokes Equations

∂V
∂t

+ V · ∇V +
1
ρ
∇p = ν∇2V + g? .

Motion on the rotating Earth:

∂V
∂t

+ V · ∇V + 2Ω× V +
1
ρ
∇p = ν∇2V + g .
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The Inventors of Thermodynamics
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The Equations of the Atmosphere

GAS LAW (Boyle’s Law and Charles’ Law.)
Relates the pressure, temperature and density
CONTINUITY EQUATION
Conservation of mass
WATER CONTINUITY EQUATION
Conservation of water (liquid, solid and gas)
EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the
pressure gradient, Coriolis force and friction
THERMODYNAMIC EQUATION
Determines changes of temperature due to heating or
cooling, compression or rarefaction, etc.

Seven equations; seven variables (u, v ,w , ρ,p,T ,q).
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Scientific Forecasting in a Nut-Shell

I The atmosphere is a physical system
I Its behaviour is governed by the laws of physics
I These laws are expressed quantitatively in the

form of mathematical equations
I Using observations, we can specify the

atmospheric state at a given initial time:
“Today’s Weather”

I Using the equations, we can calculate how this
state will change over time:

“Tomorrow’s Weather”
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Scientific Forecasting in a Nut-Shell

Problems:

I The equations are very complicated (non-linear)
and a powerful computer is required to do the
calculations

I The accuracy decreases as the range increases;
there is an inherent limit of predictibility.
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Pioneers of Scientific Forecasting

Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson
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Cleveland Abbe

By 1890, the American mete-
orologist Cleveland Abbe had
recognized that:

Meteorology is essentially the
application of hydrodynamics
and thermodynamics to the at-
mosphere.

Abbe proposed a mathematical
approach to forecasting.
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Vilhelm Bjerknes

A more explicit analysis of
weather prediction was under-
taken by the Norwegian scien-
tist Vilhelm Bjerknes

He identified the two crucial
components of a scientific fore-
casting system:

I Analysis
I Integration
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Lewis Fry Richardson

The English Quaker scientist
Lewis Fry Richardson attempted
a direct solution of the equations
of motion.

He dreamed that numerical fore-
casting would become a practical
reality.

Today, forecasts are prepared rou-
tinely using his methods . . .

. . . his dream has indeed come true.
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Lewis Fry Richardson, 1881–1953.

During WW I, Richardson
computed by hand the
pressure change at a sin-
gle point.

His ‘forecast’ was a
catastrophic failure:

∆p = 145 hPa in 6 hrs

But Richardson’s method was scientifically sound.
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Initialization of Richardson’s Forecast

Richardson’s Forecast has been repeated using a
modern computer.

The atmospheric observations for 20 May, 1910, were
recovered from original sources.

I ORIGINAL: dps
dt = +145 hPa/6 h

I INITIALIZED: dps
dt = −0.9 hPa/6 h

Observations: The barometer was steady!
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Crucial Advances, 1920–1950

I Dynamic Meteorology
I Quasi-geostrophic Theory

I Numerical Analysis
I CFL Criterion

I Atmopsheric Observations
I Radiosonde

I Electronic Computing
I ENIAC
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The ENIAC
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The ENIAC

The ENIAC was the first multi-
purpose programmable elec-
tronic digital computer.
It had:

I 18,000 vacuum tubes
I 70,000 resistors
I 10,000 capacitors
I 6,000 switches
I Power: 140 kWatts
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Charney Fjørtoft von Neumann

Numerical integration of the barotropic vorticity equation
Tellus, 2, 237–254 (1950).
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Charney, et al., Tellus, 1950.

I The atmosphere is treated as a single layer.
I The flow is assumed to be nondivergent.
I Absolute vorticity is conserved.

d(ζ + f)
dt

= 0.
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The ENIAC Algorithm: Flow-chart

G. W. Platzman: The ENIAC Computations of 1950 — Gateway to Numerical Weather Prediction
(BAMS, April, 1979).
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ENIAC Forecast for Jan 5, 1949
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NWP Operations

The Joint Numerical Weather Prediction
Unit was established on July 1, 1954:

I Air Weather Service of US Air Force
I The US Weather Bureau
I The Naval Weather Service.

Operational numerical weather forecasting began in
May 1955, using a 3-level quasi-geostrophic model.

Prehistory ENIAC LT Scheme



Recreating the ENIAC Forecasts

The ENIAC integrations have been repeated using:

I A MATLAB program to solve the BVE
I Data from the NCEP/NCAR reanalysis
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Recreation of the Forecast
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Computing Time for ENIAC Runs

I On ENIAC, a 24 hour forecast took about 24 hours
computing time.

I The program ENIAC.M was run on a Sony Vaio
(model VGN-TX2XP)

I The main loop of the 24-hour forecast ran in
about 30 ms.

I More recently, run on a mobile phone:
PHONIAC. Run time 75 ms.

Lynch, Peter, 2008: The ENIAC Forecasts: A Recreation. Bull. Amer. Met. Soc., 89, 45–55.

Prehistory ENIAC LT Scheme



PHONIAC: Portable Hand Operated
Numerical Integrator and Computer
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Notices of the AMS (the other AMS!)
ISSN 0002-9920 (print)

ISSN 1088-9477 (online)

               Volume 60, Number 8

of the American Mathematical Society
September 2013

About the cover: 63 years since ENIAC broke the ice (see page 1113) 

The Calculus Concept Inventory—
Measurement of the Effect of Teaching 
Methodology in Mathematics
page 1018

DML-CZ: The Experience of a Medium-
Sized Digital Mathematics Library
page 1028

Fingerprint Databases for Theorems
page 1034

A History of the Arf-Kervaire Invariant 
Problem
page 1040

Cover of the September
2013 issue of Notices of
the American Mathemati-
cal Society.

See also Weather, Novem-
ber 2008.
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The Laplace Transform Scheme

LT scheme developed for initialization (c. 1984)

LT scheme applied to forecasting by J. Van Isacker
and W. Struylaert (c. 1985).

Published in WMO/IUGG Symposium Proceedings,
Tokyo, 1986.
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Some References

I Van Isacker J and Struylaert W., 1985:
Numerical Forecasting using Laplace Transforms.
Publications Serie A 115.
Institut Royal Meteorologique de Belgique, Brussels.

I Van Isacker J and Struylaert W. 1986:
Laplace Transform applied to a baroclinic model.
In Short- and Medium-Range Numerical Weather
Prediction, Proceedings of IUGG NWP Symposium.
Matsuno T. (ed.) Meteorol. Soc. Japan, Tokyo.
247–253.
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The Laplace Transform: Definition

For a function of time f (t), t ≥ 0, the LT is defined as

f̂ (s) =

∫ ∞
0

e−st f (t) dt .

Here, s is complex and f̂ (s) is a complex function of s.

Prehistory ENIAC LT Scheme



LF and HF oscillations and their transforms
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The Laplace Transform: Inversion

The inversion formula is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds .

where C1 is a contour in the s-plane.
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For an integral around a closed contour,

f (t) =
1

2πi

∮
C0

α exp(st)

s − iω
ds ,

we can apply the residue theorem:

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]
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Contribution from C2 vanishes in limit of infinite radius
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Approximating the Contour C?
We replace the circle C? by an N-gon C?N:
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Numerical approximation: the inverse

L?{f̂ (s)} =
1

2πi

∮
C?

exp(st) f̂ (s) ds

is approximated by the summation

L?
N{f̂ (s)} =

1
2πi

N∑
n=1

exp(snt) f̂ (sn) ∆sn

(For details, see Clancy and Lynch, 2011a)
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Van Isacker’s Inversion Formula

L?
N{f̂ (s)} =

1
2πi

N∑
n=1

exp(snt) f̂ (sn) ∆sn

We introduce a correction factor, and arrive at:

L?
N{f̂ (s)} =

1
N

N∑
n=1

expN(snt) f̂ (sn) sn

Here expN(z) is the N-term Taylor expansion of exp(z).
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A General NWP Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.
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Now we take n∆t to be the initial time:

(s X̂− Xn) + i LX̂ +
1
s

Nn = 0

The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn − 1

s
Nn
]

We recover the filtered solution at time (n + 1)∆t by
applying L? at time ∆t beyond the initial time:

X?((n + 1)∆t) = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.
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(Clancy and Lynch, QJRMS, 137, 2011)
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Relative phase errors for semi-implicit (SI) and Laplace
transform (LT) schemes for Kelvin waves m = 1 and m = 5.
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Lagrangian Formulation
We now consider how to combine the Laplace
transform approach with Lagrangian advection.

The general form of the equation is

DX
Dt

+ i LX + N(X) = 0

where advection is now included in the time
derivative.

We re-define the Laplace transform to be the integral
in time along the trajectory of a fluid parcel:

X̂(s) ≡
∫
T

e−st X(t) dt
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Orographic Resonance

I Spurious resonance arises from coupling the
semi-Lagrangian and semi-implicit methods

I Linear analysis of orographically forced
stationary waves confirms this

I This motivates an investigating of
orographic resonance in a full model.
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Analytical Inversion

We now consider the LT scheme with the inverse
computed analytically.

This yields a filtered system. We relate it to the
filtering schemes of Daley (1980).

The procedure requires explicit knowledge of the
positions of the poles of the function to be inverted.

For the Eulerian model, this is simple.
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Eulerian Model: Rossby-Haurwitz (Case 6)

First plot:
I Reference SI scheme
I Numerical LT with N = 8, cutoff period 3 hours
I Numerical LT with N = 8, cutoff period 1 hour.

Second plot:
I Reference SI scheme
I Analytical LT with cutoff period 3 hours
I Analytical LT with cutoff period 1 hour.
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Conclusion

Advantages
I LT scheme effectively filters HF waves
I LT scheme more accurate than SI scheme
I LT scheme has no orographic resonance.

New Results
I Analytical LT more accurate than numerical
I Lagrangian scheme: more work needed
I Some problems remain with Coriolis terms.
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Thank you
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