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Introduction

The energy distribution in turbulent systems varies widely.

A power-law dependence on wavenumber is common:

• Burgers turbulence (1D): a K−2 spectrum

• Atmosphere, synoptic range (∼2D): a K−3 spectrum

• Fully developed 3D turbulence: K−5/3 spectrum.
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Canonical Statistical Mechanics

The equilibrium statistical mechanics of classical systems is
based on Liouville’s Theorem.

This theorem continues to hold under spectral truncation.

As a result, the probability distribution function (PDF) of
a constant of the motion, K, has the canonical form

Z(β) exp(−βK)

The partition function Z(β) normalizes the distribution.

The quantity 1/β plays a role analogous to the temperature
in thermodynamic systems.
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Non-equilibrium steady state

Typically, turbulent motions are far from equilibrium.

Turbulence is a dissipative, irreversible process.

It is often stated that equilibrium statistical mechanics is
inapplicable to turbulence.

However, if forcing and dissipation are on average in bal-
ance, a non-equilibrium steady state may be reached.

We consider driven and damped motions in two dimensions,
in which the mean forcing and damping are in balance.
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Applications of the theory

Using the balance between forcing and damping as con-
straints, we derive a range of energy spectra for such non-
equilibrium systems.

• Burgers’ Equation: K−2

• 2D turbulence on bi-periodic domain: K−3

• Geostrophic turbulence (∼2D) on the sphere: K−3

We compare theoretical results with numerical integrations.

Good agreement is found.
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The Entropy
The state of the system is

a = (a1, a2, . . . , aN ) .

The distribution function is

W = W (a)

We wish to find W .

We define the entropy:

S = −
∫
W logW da

We seek the W that maximizes S subject to constraints.
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Lagrange Multipliers

Since W is a PDF we have∫
W (a) da = 1 .

Consider a constraint on the expected value of K(a):

〈K〉 =

∫
K(a)W (a) da = K0 .

We use Lagrange multipliers:

Sconstrained = S + ρ

(∫
W da− 1

)
+ λ

(
K0 − 〈K〉

)
.
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The Canonical Distribution

The variational derivative, varying W , gives

− logW − 1 + ρ− λK = 0

The canonical distribution function is

W = eρ−1 exp(−λK) .

We will apply this to several specific cases.
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Forced Burgers equation

∂u

∂t
+ u

∂u

∂x
= F (x) + ν

∂2u

∂x2

Periodicity on interval x ∈ [0, 2π].

The energy principle is

dE

dt
= F −D

where

E =

∫
1
2u

2 dx F =
∫
Fu dx D = ν

∫
u2
x dx
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Spectral Expansion
We expand u(x, t) in spectral components (assuming u even).

u(x, t) =

N∑
k=1

ak(t) cos kx

The energy equation is, as above,

dE

dt
= F −D

where
F = 1

2

∑N
k=1 fkak D = 1

2ν
∑N
k=1 k

2a2
k .
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No Forcing or Dissipation

We consider the case without forcing or dissipation.

Assume the expected value of the total energy is constant.

〈E〉 = 1
2

∑N
k=1〈a2

k〉 = E0 ,

The distribution function is

W = eρ−1 exp(−λE) .

We make this more explicit:

W = eρ−1 exp

−λπ N∑
k=1

a2
k

 .
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Repeating:

W = eρ−1 exp

−λπ N∑
k=1

a2
k

 .

Defining σ2 = 1/(2λπ), we have

W =

N∏
k=1

1

σ
√

2π
exp

(
−
a2
k

2σ2

)
=

N∏
k=1

N (0, σ, ak) .

Each component ak, has zero mean.

Each has the same standard deviation σ.

There is equi-partitioning of energy.
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Balance: 〈Forcing〉 = 〈Dissipation〉
We now assume that〈

dE

dt

〉
=
〈

1
2

∑N
k=1

(
fkak − νk2a2

k

)〉
= 0 .

Define the mean and variance

µk = fk/(2νk
2) σ2

k = 1/(2λνk2)

Then

W =

N∏
k=1

N (µk, σk, ak) .

The mean and variance are different for each component.

µk = fk/(2νk
2) σ2

k = 1/(2λνk2)
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Repeat: the mean and variance are

µk = fk/(2νk
2) σ2

k = 1/(2λνk2)

This implies a k−2 spectrum . . .

Energy spectrum for Burgers’ equation
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Two-dimensional Turbulence

We now consider turbulent motion on a two-dimensional
bi-periodic domain [0, 2π]× [0, 2π].

The vorticity equation is

∂ω

∂t
+ J(ψ, ω) = F + ν∇2ω .

Both total energy and total enstrophy are
conserved for unforced and undamped flow.
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dE

dt
=
d

dt

∫ ∫
1
2∇ψ·∇ψ dxdy =

∫ ∫ [
Fψ − νω2

]
dxdy

dS

dt
=
d

dt

∫ ∫
1
2ω

2 dxdy =

∫ ∫ [
Fω − ν∇ω·∇ω

]
dxdy .

The spectral enstrophy equation is

dS

dt
=
d

dt

∑
k`

1
2ω

2
k` =

∑
k`

[
fk`ωk` − ν(k2 + `2)ω2

k`

]
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We now assume〈
dS

dt

〉
=

〈∑
k`

(
fk`ωk` − νK2ω2

k`

)〉
= 0 ,

where K2 = k2 + `2.

We define mean and variance

µk` = fk`/(2νK
2) σ2

k` = 1/(2λνK2) .

The distribution function becomes

W =
∏
k`

N (µk`, σk`, ωk`) .
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The variance σ2
k` has a K−2 dependence on wavenumber.

Thus, in the inertial range, we have

〈ω2
k`〉 ∝ K−2 .

The energy spectrum (integrating over the angle) is

EK ∝ K−3

This is precisely what we expect for the enstrophy cascade
in two-dimensional turbulent flow.
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Energy and Enstrophy development during
decaying 2D quasi-geostrophic turbulence.
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Energy spectrum after 10 days (solid line is K−3 spectrum).
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The Barotropic PV Equation
We now introduce rotation and of vortex stretching.

With the usual quasi-geostrophic approximations, we have

∂

∂t
(ω − Λψ) + J(ψ, ω) + β

∂ψ

∂x
= F −D ,

where β = df/dy and Λ = f2
0/gH (Pedlosky, 1987).

The energy equation is:

d

dt

∫ ∫
1
2

[
(∇ψ)2 + Λψ2

]
dxdy =

∫ ∫ [
Fψ − νω2

]
dxdy .

The enstrophy equation is

d

dt

∫ ∫
1
2 (ω − Λψ)2 dxdy =

∫ ∫ [
F (ω−Λψ)−ν∇(ω−Λψ)·∇ω

]
dxdy .

The enstrophy equation in spectral form:

dS

dt
=
d

dt

∑
k`

1
2(ωk` − Λψk`)

2 =
∑
k`

(
1 +

Λ

K2

)[
fk`ωk` − νK2ωk`

]
.

24



We assume that the forcing and damping balance:〈
−νK2

(
1 +

Λ

k2

)[
ω2
k` −

fk
νK2

ωk`

]〉
= 0 .

Defining µk` = fk`/(2νK
2), this constraint is 〈K〉 = 0, where

K = −
∑
k`

νK2
(

1 +
Λ

K2

)[
(ωk` − µk`)

2 − µ2
k`

]
The probability density function may once again be written
in normal form, with variance

σ2
k` =

1

2λν(K2 + Λ)
.

Outside the forcing region, where µk` = 0, we have

〈ω2
k`〉 ∝

1

K2 + Λ
.
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The spectrum of the vorticity components is

ωk` ∝
1√

K2 + Λ

Thus, the streamfunction goes as

ψk` ∝
1

K2
√
K2 + Λ

and the components of energy vary as

Ek` ∝
1

K2(K2 + Λ)

Summing over all components having total wavenumber K,

EK ∝
1

K(K2 + Λ)
.

For K � Λ we get a K−1 spectrum.
For K � Λ we get a K−3 spectrum.
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Geostrophic Turbulence on Sphere

The barotropic vorticity equation is

∂q

∂t
+ v · ∇q = F +

∑
p

(−1)p+1νp∇2p+2ψ,

where q is the quasi-geostrophic potential vorticity

q = f + ω − Λψ + f
h

H
.

(h is the orography).

The system is forced by F and damped by (hyper-)viscosity.
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The system has energy and potential enstrophy principles:

dE

dt
= F −D,

dZ

dt
= G −H,

where

E =
1

4π

∫∫
1
2[v

2 + Λψ2] dS, Z =
1

4π

∫∫
1
2q

2 dS,

F = − 1

4π

∫∫
ψF dS, D =

1

4π

∫∫
ψ

∑
p

(−1)p+1νp∇2p+2ψ

 dS,

G =
1

4π

∫∫
qF dS, H = − 1

4π

∫∫
q

∑
p

(−1)p+1νp∇2p+2ψ

 dS.
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The vorticity ω is expanded in spherical harmonics

ω(λ, φ, t) =
∑
mn

ωmn(t)Ymn(λ, φ),

The spectral coefficients are given by

ωmn(t) =
1

4π

∫
Ymn(λ, φ)ω(λ, φ, t) dS.

They are related to the coefficients of ψ by

ωmn = −enψmn where en = n(n + 1) .

The field f + f (h/H) is expanded as

f + f
h

H
=
∑
mn

fmnYmn,

Then

qmn = fmn − εnψmn , where εn = Λ + en .

The damping term may be written as∑
p

(−1)p+1νp∇2p+2ψ =
∑
mn

∑
p

νpe
p+1
n

ψmnYmn
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With these definitions we may write, in terms of ψmn:

E =
∑
mn

1
2εnψ

2
mn, Z =

∑
mn

[1
2ε

2
nψ

2
mn − εnfmnψmn + 1

2f
2
mn

]
,

F =
∑
mn

−Fmnψmn, D =
∑
mn

dnψ
2
mn,

G =
∑
mn

[
−εnFmnψmn + fmnFmn

]
, H =

∑
mn

[
dnεnψ

2
mn − dnfmnψmn

]
.

These quantities are formally similar to previous cases.
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The Unforced-Undamped Case
The constraints to be used when there is neither forcing nor
damping are constancy of energy E and pot. enstrophy Z:

〈K1〉 = 〈E〉 = E0, 〈K2〉 = 〈Z〉 = Z0,

For the multivariate normal distribution function we get:

W (ψ−N,−N , ..., ψN,N ) =
∏
mn

N (µmn, σmn, ψmn),

where the variance and mean are

σ2
mn =

1

εn(β + γεn)
and µmn =

γfmn
β + γεn

.

The mean values are determined by the Coriolis parameter
and the orography and the variance depends on εn.
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We eventually get the energy and esntrophy spectra

En =
2n + 1

2(β + γεn)
+

γ2εn
2(β + γεn)2

n∑
m=−n

f2
mn ,

Zn =
(2n + 1)εn
2(β + γεn)

+
β2

2(β + γεn)2

n∑
m=−n

f2
mn .

These expressions are very similar to those for
two-dimensional turbulence.

When the Coriolis parameter and the orography
are zero En and Zn behave as n−1 and n.
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The Forced-Damped Case
We assume the system is in a statistically stationarity state.
This means that we will use as constraints:

〈K1〉 = 〈E〉 = E0, 〈K2〉 = 〈D − F〉 = 0, 〈K3〉 = 〈H − G〉 = 0.

This eventually gives the distribution function

W (ψ−N,−N , ..., ψN,N ) =
∏
mn

N (µmn, σmn, ψmn),

with variance and mean

σ2
mn =

1

2dn(β + γεn)
and µmn =

γfmn
2(β + γεn)

− Fmn
2dn

.

For the energy and potential enstrophy we now have:

〈E〉 =
∑
mn

[
εn

4dn(β + γεn)
+

γ2εnf
2
mn

8(β + γεn)2
+
εnF

2
mn

8d2
n

− γεnfmnFmn
4dn(β + γεn)

]
,

〈Z〉 =
∑
mn

[
ε2n

4dn(β + γεn)
+

(γεn + 2β)2f2
mn

8(β + γεn)2
+
ε2nF

2
mn

8d2
n

+
εn(γεn + 2β)fmnFmn

4dn(β + γεn)

]
.
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We may write the result as

〈E〉 =

N∑
n=1

En, 〈Z〉 =

N∑
n=1

Zn,

Since both εn and dn are independent of m, we have

En =
(2n + 1)εn

4dn(β + γεn)
+

n∑
m=−n

εn
[γfmn − ((β + γεn)Fmn)/dn]

2

8(β + γεn)2
,

Zn =
(2n + 1)ε2n

4dn(β + γεn)
+

n∑
m=−n

[(γεn + 2β)fmn + ((β + γεn)εnFmn)/dn]
2

8(β + γεn)2
.

The extra terms arise because of the presence of the Earth’s
rotation, orography and forcing.

We will compare these spectra to numerical results.
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Energy and Enstrophy constrained.
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Energy and Enstrophy decay rates constrained.
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Energy and Enstrophy and decay rates constrained.
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The End

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05
Graphics Software: Adobe Illustrator 9.0.2
LATEX Slide Macro Packages: Wendy McKay, Ross Moore


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

