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Introduction

The energy distribution in turbulent systems varies widely.

A power-law dependence on wavenumber is common:

e Burgers turbulence (1D): a K2 spectrum
e Atmosphere, synoptic range (~2D): a K~ spectrum
e Fully developed 3D turbulence: K —5/3 spectrum.



Canonical Statistical Mechanics

The equilibrium statistical mechanics of classical systems is
based on Liouville’s Theorem.

This theorem continues to hold under spectral truncation.

As a result, the probability distribution function (PDF) of
a constant of the motion, K, has the canonical form

Z(3) exp(—pBK)

The partition function Z((3) normalizes the distribution.

The quantity 1/6 plays a role analogous to the temperature
in thermodynamic systems.



Non-equilibrium steady state

Typically, turbulent motions are far from equilibrium.

Turbulence is a dissipative, irreversible process.

It is often stated that equilibrium statistical mechanics is
inapplicable to turbulence.

However, if forcing and dissipation are on average in bal-
ance, a non-equilibrium steady state may be reached.

We consider driven and damped motions in two dimensions,
in which the mean forcing and damping are in balance.



Applications of the theory

Using the balance between forcing and damping as con-
straints, we derive a range of energy spectra for such non-
equilibrium systems.

e Burgers’ Equation: K2
e 2D turbulence on bi-periodic domain: K3

e Geostrophic turbulence (~2D) on the sphere: K3

We compare theoretical results with numerical integrations.

Good agreement is found.
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The state of the system is

a:(al,ag,...,aN).

The distribution function is
W =W/(a)
We wish to find W.

We define the entropy:

S = —/Wlonga

We seek the I/ that maximizes S subject to constraints.



Lagrange Multipliers

Since W is a PDF we have
/W(a) da=1.

Consider a constraint on the expected value of K(a):

() = /IC(a)W(a) da =K.

We use Lagrange multipliers:

Sconstrained = O T P (/ W da — 1) T )‘(ICO — <IC>> :



The Canonical Distribution

The variational derivative, varying W, gives

—logW —14+p—-—AC =0

The canonical distribution function is

W = e’ exp(—AK).

We will apply this to several specific cases.



Forced Burgers equation

ou ou 0%u

Periodicity on interval = € |0, 27].

The energy principle is
dFE
S _F_D
dt

where

E—/%qua: F = | Fudx D:Vfu?cd:c



Spectral Expansion

We expand u(x,t) in spectral components (assuming u even).

N
u(x,t) =Y ap(t)coskx
k=1

The energy equation is, as above,

dE
——F-D
a7

where
1 N 1 N ;929
F=35>p=1frar D=gv) p_1k%a.



No Forcing or Dissipation

We consider the case without forcing or dissipation.

Assume the expected value of the total energy is constant.

(B) =531y (a) = Ey,

The distribution function is

W = e’ Lexp(—=\E) .
We make this more explicit:

N
W = el Lexp —AWZ@%
k=1



Repeating:

N
W = e’ Lexp —)\WZCL%
k=1

Defining 0 = 1/(2\7), we have
2

N | q N
_ k|
W_kl_[lO =G (Tﬂ) —]}_{N(O,U,ak).

FEach component a;., has zero mean.
Each has the same standard deviation o.

There is equi-partitioning of energy.



Balance: (Forcing) = (Dissipation)
We now assume that
<62—§> = (3300 (fray — vh%a}) ) = 0.

Define the mean and variance

i = i/ vk?)  of = 1/(22wk?)

Then

N
W= ][N o, ar).
h—1

The mean and variance are different for each component.

i = S/ Quk?) o = 1/(22vk?)



Repeat: the mean and variance are

pro = i/ (KY) o = 1/ 20k

This implies a £~2 spectrum ...
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Two-dimensional Turbulence

We now consider turbulent motion on a two-dimensional
bi-periodic domain |0, 27| x [0, 27].

The vorticity equation is

%—C:%—J(w,w) — F+1Vw.

Both total energy and total enstrophy are
conserved for unforced and undamped flow.



df dt// Wwdl’dy—// [Fy — vw?] dwdy
dt // dedy_//[FW—VVw-Vw} dxdy .

The spectral enstrophy equation is

2 g2y 2
dt dt22 M—Z frowge — v(k* + 02)wi,]
K



We now assume

<%> _ <Z (f,{gwkg _ VK2w2£)> —0,

k/
where K2 = k% + (2,

We define mean and variance

e = fre/ QvK?) oy = 1/(2K?) .

The distribution function becomes

W =] N (ke o, wie) -
o,



The variance O']%K has a K2 dependence on wavenumber.

Thus, in the inertial range, we have

(w@) x K2

The energy spectrum (integrating over the angle) is

Er < K°

This is precisely what we expect for the enstrophy cascade
in two-dimensional turbulent flow.
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The Barotropic PV Equation

We now introduce rotation and of vortex stretching.

With the usual quasi-geostrophic approximations, we have

9, Y
E(W—AWﬂLJ(%W)JFﬁ%—F—D,

where 8 = df /dy and A = f/gH (Pedlosky, 1987).

The energy equation is:

% / / 2 [(V)? + Ay?] dady = / / [Fy — vw?] dady .

The enstrophy equation is
d
%//% (w— AY)? dzdy = // Fw—Ay)—vV(w—Ay)-Vw| dzdy .

The enstrophy equation in spectral form:

ds d A
T dtZ%WM — Apgp)® = (1 + ﬁ> [ frowre — vE wyy) -
kl Kl




We assume that the forcing and damping balance:

A
<—VK2 (1 + ﬁ> [wzg = Vf—[gwkg] > = 0.

Defining 1.y = f1.¢/(2vK?), this constraint is (K) = 0, where
A
K=-) vk~ (1 + ﬁ) [(‘%E — pige)” — M%g}
Kl

The probability density function may once again be written
in normal form, with variance

O'2 = !
RETONU(K2+ A)

Outside the forcing region, where ;) = 0, we have

1
5
Whe) o K241 A




The spectrum of the vorticity components is
1

VK2 A
Thus, the streamfunction goes as

1
X
Vit K2VK2+ A

and the components of energy vary as
1

K2(K2+ A)

wkg 0.6

Ek@ 0.6

Summing over all components having total wavenumber K,

1
K(K>+A)

E[(O(

For K < A we get a K~ spectrum.
For K > A we get a K3 spectrum.



Geostrophic Turbulence on Sphere

The barotropic vorticity equation is

g +1. —2p+2
E—FV-VQ—F—F;(—UP vp VP2,

where ¢ is the quasi-geostrophic potential vorticity

h

(h is the orography).

The system is forced by F' and damped by (hyper-)viscosity.



The system has energy and potential enstrophy principles:

dE

— —F-D
g
a9

where
E:i//l[v2+A¢2]ds Z:i//lcﬂds
Arr )| 2 ’ A | ) 2 ’
1 1
F=—0 / / pFdS, D= / / Y | (1P vy | dS,
1 1
G =1 / / FdS,  H=-—— / / q | ) (—1PTy, vy ds.




The vorticity w is expanded in spherical harmonics

w()\, gb, t) = Z wmn<t)ymn()\a §b>a

The spectral coefficients are given by
1
onnlt) = 1 [ Yo @3, 0.8)ds

They are related to the coefficients of ) by
(.Umn = _enwmn Where en = TL(TL _|_ 1) .
The field f + f(h/H) is expanded as

f"‘f% — menymna

Then

Gmn = Jmn — En¥mn where en=N+en.
The damping term may be written as

1
Z(_DerlypvaJr?w = Z Z Vpngr UmnYmn
mn

p p



With these definitions we may write, in terms of ,,:

F = Z %%%%W 4 = Zmnbgn mn €nfmn¢mn + %f%m}’
mn
F = Z _anwmna D = Z dnwgnna

g = Z —enEmn¥mn + fmnan H = Z dng’nwmn dnfmnwmn}

These quantities are formally similar to previous cases.



The Unforced-Undamped Case

The constraints to be used when there is neither forcing nor
damping are constancy of energy F and pot. enstrophy Z:

(K1) =(E) =E°, (Ko)=(2)=2",

For the multivariate normal distribution function we get:

W(¢—N,—N7 ---»¢N,N) — HN(an; Omns Umn),

where the variance and mean are

2 _ 1 and oy = Y S
- mn — g
T e (B + yen) B+ ven

o

The mean values are determined by the Coriolis parameter
and the orography and the variance depends on ¢,,.



We eventually get the energy and esntrophy spectra

2n + 1 787@
B, = +5 > 2
" 2B+ ven) 2B+ en Qm_ o

 (2n+1)ey 3
T 2B+ ven) 2B+ ey anm”

TN =

These expressions are very similar to those for
two-dimensional turbulence.

When the Coriolis parameter and the orography
are zero E, and Z,, behave as n~1 and n.



The Forced-Damped Case

We assume the system is in a statistically stationarity state.
This means that we will use as constraints:

(K1) =(E) =Ey, (K2)=(D—-F)=0, (K3)=(H-G)=0.

This eventually gives the distribution function

W(w—N,—Na -'-awN,N) — HN(Nmna Omns Umn),

with variance and mean
o2 — 1 and - Y fmn Fon
e 2dn<ﬁ =+ 7571)

= 2(5 T 7577/) N 2dy, .

For the energy and potential enstrophy we now have:

E) — &n 725’nf7%m 57%F7%m Yen fmnLmn
< >_Z 4dy, (6 + +8 5T 2 4d 7
mn n 7577,) (ﬁ + ’7577,) 3 7 n(ﬂ — ’chn)_
7\ — 5721 (7571 + 25>2f7%zn E%ngn 57?,(757?/ + Qﬁ)fm
(Z) = > T A el



We may write the result as

N N
B =3 F0 (=37
n=1 n=1

Since both ¢, and d,, are independent of m, we have

n

E, = (2n + 1en n Z thfmn — ((B+ 75n)an>/dn]2

4dp (B + ven) = 8(8 + ven)? |
. (@n+ 1es, - (ven + 28) fran + (B + ven)enFmn) /dn)?
“n = Adn (B + ven) ' m;n 8(8 + ven)? |

The extra terms arise because of the presence of the Earth’s
rotation, orography and forcing.

We will compare these spectra to numerical results.
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