Remembering Bertram Broberg

The ENIAC Forecasts: A Recreation

Peter Lynch

UCD Meteorology \& Climate Centre School of Mathematical Sciences

Joint Symposium of
Irish Mechanics Society
Swedish National Committee for Mechanics
Irish Society for Scientific \& Engineering Mechanics

$$
\text { 9-10 Мау, } 2007 .
$$

Outline of the lecture

- Introduction
- Preparing the Ground
- The First Computer Forecast
- Into Operations
- Recreating the Forecasts

Pioneers of Scientific Forecasting

Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson

Cleveland Abbe

By 1890, the American meteorologist Cleveland Abbe had recognized that:

Meteorology is essentially the application of hydrodynamics and thermodynamics to the atmosphere.

Abbe proposed a mathematical approach to forecasting.

Vilhelm Bjerknes

A more explicit analysis of weather prediction was undertaken by the Norwegian scientist Vilhelm Bjerknes
He identified the two crucial components of a scientific forecasting system:

- Analysis
- Integration

Lewis Fry Richardson

The English Quaker scientist Lewis Fry Richardson attempted a direct solution of the equations of motion.
He dreamed that numerical forecasting would become a practical reality.

Today, forecasts are prepared routinely using methods similar to Richardson's ...
... his dream has indeed come true.

Richardson's Forecast Factory

© François Schuiten

Richardson's Forecast Factory

© François Schuiten
64,000 Computers: The first Massively Parallel Processor

Crucial Advances, 1920-1950

\square Dynamic Meteorology
\square Quasi-geostrophic Theory
\square Numerical Analysis
\square CFL Criterion
■ Atmopsheric Observations
\square Radiosonde
\square Electronic Computing
\square ENIAC

The Meteorology Project

Project estblished by John von Neumann in 1946.
Objective of the project:
To study the problem of predicting the weather using a digital electronic computer.

A Proposal for Funding listed three "possibilities":
■ New methods of weather prediction
\square Rational basis for planning observations
\square Step towards influencing the weather!

The ENIAC

The ENIAC

The ENIAC was the first multi-purpose programmable electronic digital computer.
It had:

- 18,000 vacuum tubes
- 70,000 resistors
- 10,000 capacitors
- 6,000 switches
- Power: 140 kWatts

The ENIAC: Technical Details.

ENIAC was a decimal machine. No high-level language. Assembly language. Fixed-point arithmetic: $-1<x<+1$. 10 registers, that is,
Ten words of high-speed memory. Function Tables:
624 6-digit words of "ROM", set on ten-pole rotary switches.
"Peripheral Memory":
Punch-cards.
Speed: FP multiply: 2ms (say, 500 Flops).
Access to Function Tables: 1ms. Access to Punch-card equipment: You can imagine!

Report on
THE ENIAC
(Electronic Numerical Integrator and Computer)

Developed under the supervision of the
Ordnance Department, United States Army

TECHNICAL REPORT I
Volume I
(Bound in two volu

UNIVERSITY OF PENNSYLVANIA
Moore School of Electrical Engineering philadelphia, pennsylvania June 1, 1946

Evolution of the Project

- Plan A: Integrate the Primitive Equations

Problems similar to Richardson's would arise

- Plan B: Integrate baroclinic Q-G System

Too computationally demanding

- Plan C: Solve barotropic vorticity equation Very satisfactory initial results

Charney, et al., Tellus, 1950.

$\left[\begin{array}{c}\text { Absolute } \\ \text { Vorticity }\end{array}\right]=\left[\begin{array}{c}\text { Relative } \\ \text { Vorticity }\end{array}\right]+\left[\begin{array}{c}\text { Planetary } \\ \text { Vorticity }\end{array}\right] \quad \eta=\zeta+f$.

- The atmosphere is treated as a single layer.
- The flow is assumed to be nondivergent.
- Absolute vorticity is conserved.

$$
\frac{d(\zeta+f)}{d t}=0
$$

This equation looks deceptively simple. But it is nonlinear:

$$
\frac{\partial}{\partial t}\left[\nabla^{2} \psi\right]+\left\{\frac{\partial \psi}{\partial x} \frac{\partial \nabla^{2} \psi}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \nabla^{2} \psi}{\partial x}\right\}+\beta \frac{\partial \psi}{\partial x}=0
$$

Charney, Fjørtoft, von Neumann

Charney

Fjørtoft

von Neumann

Numerical integration of the barotropic vorticity equation Tellus, 2, 237-254 (1950).

Solution method for BPVE

$$
\frac{\partial \zeta}{\partial t}=\mathbf{J}(\psi, \zeta+f)
$$

1. Compute the Jacobian
2. Step forward (Leapfrog scheme)
3. Solve Poisson equation $\nabla^{2} \psi=\zeta$ (Fourier expansion)
4. Go to (1).

- Timestep : $\Delta t=1$ hour
- Gridstep : $\Delta x=750 \mathrm{~km}$ (at North Pole)
- Gridsize : $19 \times 16 \approx 300$ points
- Elapsed time for 24 hour forecast: About 24 hours.

Each forecast involved punching about 25,000 cards. Most of the time was spent handling card-decks.

Flow-chart for the computations.
G. W. Platzman: The ENIAC Computations of 1950 - Gateway to Numerical Weather Prediction (BAMS, April, 1979).

ENIAC: First Computer Forecast

Key people in the ENIAC endeavour

NWP Operations

The Joint Numerical Weather Prediction Unit was established on July 1, 1954:
\square Air Weather Service of US Air Force \square The US Weather Bureau \square The Naval Weather Service.

Operational numerical weather forecasting began in May, 1955, using a three-level quasigeostrophic model.

Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

- A MATLAB program to solve the BVE
- Data from the NCEP/NCAR reanalysis

The matlab code is available on the author's website http://maths.ucd.ie/~plynch/eniac

The initial dates for the four forecasts were:

- January 5, 1949
- January 30, 1949
- January 31, 1949
- February 13, 1949

When a reconstruction was first conceived, a laborious digitization of hand-drawn charts appeared necessary.

The NCEP/NCAR 40-Year Reanalysis Project

E. Kalnay,* M. Kanamitsu,* R. Kistler,* W. Collins,* D. Deaven,* L. Gandin,* M. Iredell,* S. Saha,* G. White,* J. Woollen,* Y. Zhu,* M. Chelliah,+ W. Ebisuzaki,+ W. Higgins,+ J. Janowiak,+ K. C. Mo,+ C. Ropelewski,+ J. Wang,+ A. Leetmaa,* R. Reynolds,* Roy Jenne,* and Dennis Joseph*

Bulletin of the American Meteorological Society, March, 1996

The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation

Robert Kistler,* Eugenia Kalnay,+ William Collins,* Suranjana Saha, ${ }^{*}$ Glenn White,* John Woollen,* Muthuvel Chelliah,* Wesley Ebisuzaki," Masao Kanamitsu,* Vernon Kousky," Huug van den Dool," Roy Jenne, ${ }^{\text {® }}$ and Michael Fiorino ${ }^{*}$

Editor's note: This article is accompanied by a CD-ROM that contains the complete documentation of the NCEP-NCAR Reanalysis and all of the data analyses and forecasts. It is provided to members through the sponsorship of SAIC and GSC.

Bulletin of the American Meteorological Society, February, 2001

$$
\begin{gathered}
\frac{d}{d t}(\zeta+f)=\frac{\partial \zeta}{\partial t}+\mathbf{V} \cdot \nabla(\zeta+f)=0 \\
\mathbf{V}=(g / f) \mathbf{k} \times \nabla z ; \quad \mathbf{V}=\mathbf{k} \times \nabla \psi . \\
\zeta=g \nabla \cdot(1 / f) \nabla z=(g / f) \nabla^{2} z+\beta u / f \\
\mathbf{v} \cdot \nabla \alpha=-\frac{g}{f} \frac{\partial z}{\partial y} \frac{\partial \alpha}{\partial x}+\frac{g}{f} \frac{\partial z}{\partial x} \frac{\partial \alpha}{\partial y}=-\frac{g}{f} J(\alpha, z) . \\
\frac{\partial}{\partial t}\left(\nabla^{2} z\right)=J\left(\frac{g}{f} \nabla^{2} z+f, z\right) .
\end{gathered}
$$

The barotropic vorticity equation

The computational grid for the integrations

ENIAC Forecast for Jan 5, 1949

a

d

Recreation of the Forecast

(A) INITIAL ANALYSIS

(C) ANALYSED \& FORECAST CHANGES

(B) VERIFYING ANALYSIS

(D) FORECAST HEIGHT

Mean error RMS error S1 Score
Case Fcst. Pers. Fcst. Pers. Fcst. Pers.
$\begin{array}{lllllll}1 & 56.4 & \mathbf{- 9 . 2} & 113.4 & \mathbf{9 4 . 6} & \mathbf{6 1 . 0} & 62.2\end{array}$
$\begin{array}{lllllll}2 & 31.1 & \mathbf{6 . 3} & \mathbf{9 9 . 2} & 114.6 & \mathbf{4 5 . 6} & 62.9\end{array}$
$\begin{array}{lllllll}3 & -35.2 & \mathbf{2 0 . 4} & 92.7 & \mathbf{8 9 . 2} & \mathbf{4 6 . 4} & 58.4\end{array}$
4
39.4
1.1
$81.9 \quad \mathbf{8 0 . 7}$
$39.5 \quad 50.1$

Mean error (bias), RMS error and S1 scores

Charney et al used the equation in the height form

$$
\frac{\partial}{\partial t}\left(\nabla^{2} z\right)=J\left(\frac{g}{f} \nabla^{2} z+f, z\right)
$$

They could have used the streamfunction form

$$
\frac{\partial}{\partial t}\left(\nabla^{2} \psi\right)=J\left(\nabla^{2} \psi+f, \psi\right)
$$

They would then not have to have ignored the beta-term

Mean error RMS error Sl Score
Case $\quad z$-EQN $\quad \psi$-EQN $\quad z$-EQN $\quad \psi$-EQN $\quad z$-EQN $\quad \psi$-EQN

1	56.4	$\mathbf{4 4 . 4}$	113.4	$\mathbf{1 0 6 . 7}$	$\mathbf{6 1 . 0}$	61.4
2	31.1	$\mathbf{2 3 . 2}$	99.2	$\mathbf{8 8 . 6}$	45.6	$\mathbf{4 4 . 1}$
3	$\mathbf{- 3 5 . 2}$	-39.6	92.7	$\mathbf{8 8 . 2}$	46.4	$\mathbf{4 5 . 4}$
4	39.4	$\mathbf{1 9 . 9}$	81.9	$\mathbf{7 2 . 1}$	39.5	$\mathbf{3 6 . 9}$

Scores for height equation and streamfunction equation

Computing Time for ENIAC Runs

■ George Platzman, during his Starr Lecture, re-ran an ENIAC forecast
\square The algorithm was coded on an IBM 5110, a desk-top machine
■ The program execution was completed during the lecture (about one hour)
\square The program eniac.m was run on a Sony Vaio (model VGN-TX2XP)
■ The main loop of the 24-hour forecast ran in about 15 ms .

Thank You

