Boxes \& Loops in Circles \& Ovals, Billiards \& Ballyards, Squircles \& Squovals

Peter Lynch
School of Mathematics \& Statistics University College Dublin

New Trends in Applied Geometric Mechanics
Celebrating Darryl Holm's 70th birthday
ICMAT, Madrid, 3-7 July 2017

Outline

Introduction
Swinging Spring
Potential Vorticity
Rock'n'Roller
Perturbed SHO
Sergey Chaplygin
Routh Sphere: $\mathbf{I}_{1}=\mathbf{I}_{\mathbf{2}}$
Quaternion Formulation
Billiards \& Ballyards
Squircles \& Squovals
Conclusion

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $\mathrm{I}_{1}=\mathrm{I}_{2}$
Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

PV
RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ
\qquad
\square

Boxes \& Loops

The familiar phase portrait of a simple pendulum shows how a separatrix divides the phase plane into two regions:

The two regions correspond to libration and rotation.
In many dynamical systems there is a similar separation of the phase plane into orbits known as boxes and loops.

Boxes \& Loops

In many dynamical systems there is a similar separation Into two types of orbits, known as boxes and loops.

This is seen in elliptical billiards, astrodynamics, rigid body mechanics and many other systems.

We will discuss this phenomenon and illustrate it with a variety of examples.

Meeting Darryl: My Good Fortune

- Met Darryl at INI (AOD Programme) in 1996.
- Darryl and family in Dublin, July 1999.
- We worked together on Swinging Spring.
- I Visited Los Alamos in Sep/Oct 2000.
- Darryl found the 3-wave Equations.
- IMA Workshop, Minnesota, February 2002.
- Rock-n-roller. Innumerable emails.
- Recently: Numerous visits to Imperial College.

Quaternion Plaque on Hamilton's Bridge

RnR
SHO
Chaplygin
Routh

Hamilton's Bridge in Dublin

Figure : Darryl and Justine in Dublin, 1999?

Sand Sculpture of Hamilton's Bridge

Figure : Hamilton's Graffito: $i^{2}=j^{2}=k^{2}=i j k=-1$.

Outline

Introduction

Swinging Spring

Potential Vorticity

Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $I_{1}=I_{2}$
Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ
x
\square

The Swinging Spring

RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ

Two distinct oscillatory modes with distinct restoring forces:

- Elastic or springy modes
- Pendular or swingy modes

Two distinct oscillatory modes with distinct restoring forces:

- Elastic or springy modes
- Pendular or swingy modes

Take a peek at the Java Applet

In a paper in 1981, Breitenberger and Mueller made the following comment:
"This simple system looks like
a toy at best, but its behaviour is astonishingly complex, with many facets of more than academic lustre."

I hope to convince you of the validity of this remark.

The Exact Equations of Motion

In Cartesian coordinates the Lagrangian is

$$
L=T-V=\underbrace{\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{Z}^{2}\right)}_{K . E}-\underbrace{\frac{1}{2} k\left(r-\ell_{0}\right)^{2}}_{E . P . E}-\underbrace{m g Z}_{G . P . E}
$$

The equations of motion are (with $\omega_{Z}^{2} \equiv k / m$):

$$
\begin{aligned}
\ddot{x} & =-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) x \\
\ddot{y} & =-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) y \\
\ddot{Z} & =-\omega_{Z}^{2}\left(\frac{r-\ell_{0}}{r}\right) Z-g
\end{aligned}
$$

Two constants, energy and angular momentum:

$$
E=T+V \quad h=x \dot{y}-y \dot{x} .
$$

The system is not integrable (two invariants, three D.O.F.).

The Canonical Equations

We consider the case of planar motion. The canonical equations of motion (in polar coordinates) are:

$$
\begin{aligned}
\dot{\theta} & =p_{\theta} / m r^{2} \\
\dot{p}_{\theta} & =-m g r \sin \theta \\
\dot{r} & =p_{r} / m \\
\dot{p}_{r} & =p_{\theta}^{2} / m r^{3}-k\left(r-\ell_{0}\right)+m g \cos \theta
\end{aligned}
$$

These equations may also be written symbolically as

$$
\dot{\mathbf{X}}+\mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

State vector X is in 4-dimensional phase space:

$$
\mathbf{X}=\left(\theta, p_{\theta}, r, p_{r}\right)^{\mathrm{T}} .
$$

Linear Normal Modes

Suppose that amplitude of motion is small:

$$
\frac{d}{d t}\left(\begin{array}{c}
\theta \\
p_{\theta} \\
r^{\prime} \\
p_{r}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 / m \ell^{2} & 0 & 0 \\
-m g \ell & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / m \\
0 & 0 & -k & 0
\end{array}\right)\left(\begin{array}{c}
\theta \\
p_{\theta} \\
r^{\prime} \\
p_{r}
\end{array}\right)
$$

The matrix is block-diagonal:

$$
\mathbf{X}=\binom{\mathbf{Y}}{\mathbf{Z}}: \quad \mathbf{Y}=\binom{\theta}{p_{\theta}}, \quad \mathbf{Z}=\binom{r^{\prime}}{p_{r} .}
$$

Linear dynamics evolve independently:

$$
\dot{\mathbf{Y}}=\left(\begin{array}{cc}
0 & 1 / m \ell^{2} \\
-m g \ell & 0
\end{array}\right) \mathbf{Y}, \quad \dot{\mathbf{Z}}=\left(\begin{array}{cc}
0 & 1 / m \\
-k & 0
\end{array}\right) \mathbf{Z} .
$$

Perturbation Theory

Ratio of rotational and elastic frequencies:

$$
\epsilon \equiv\left(\frac{\omega_{R}}{\omega_{z}}\right)=\sqrt{\frac{m g}{k \ell}}
$$

For $\epsilon=0$, there is no coupling between the modes.
For $\epsilon \ll 1$ the coupling is weak. We can apply classical Hamiltonian perturbation theory.

Regular and Chaotic Motion

We wish to discuss the phenomenon of Resonance for the spring, and its Pulsation and Precession.

Resonance occurs for

$$
\epsilon \approx \frac{1}{2}
$$

This is far from the quasi-integrable case (small ϵ).
However, for small amplitudes, the motion is also quasi-integrable. We look at two numerical solutions, one with small amplitude, one with large.

Horizontal plan: Low energy case

Horizontal plan: High energy case

The Resonant Case

The Lagrangian (to cubic order) is
$L=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{1}{2}\left(\omega_{R}^{2}\left(x^{2}+y^{2}\right)+\omega_{Z}^{2} z^{2}\right)+\frac{1}{2} \lambda\left(x^{2}+y^{2}\right) z$,
We study the resonant case:

$$
\omega_{z}=2 \omega_{R} .
$$

The equations of motion are

$$
\begin{aligned}
\ddot{x}+\omega_{R}^{2} x & =\lambda x z \\
\ddot{y}+\omega_{R}^{2} y & =\lambda y z \\
\ddot{x}+\omega_{z}^{2} x & =\frac{1}{2} \lambda\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

The system is not integrable.

Averaged Lagrangian technique

We seek a solution of the form:

$$
\begin{aligned}
& x=\Re\left[a(t) \exp \left(i \omega_{R} t\right)\right], \\
& y=\Re\left[b(t) \exp \left(i \omega_{R} t\right)\right], \\
& z=\Re\left[c(t) \exp \left(2 i \omega_{R} t\right)\right]
\end{aligned}
$$

The coefficients $a(t), b(t)$ and $c(t)$ vary slowly.
The Lagrangian is averaged over fast time:

$$
\left.\langle L\rangle=\left(\frac{\omega_{R}}{2}\right)\left[\Im\left(a \dot{a}^{*}+b \dot{b}^{*}+2 c \dot{c}^{*}\right)+\kappa \Re\left(a^{2}+b^{2}\right) c^{*}\right)\right]
$$

where $\kappa=\lambda /\left(4 \omega_{R}\right)$ (we absorb κ in t).

The Euler-Lagrange Equations

We derive the Euler-Lagrange equations resulting from this averaged Lagrangian:

$$
\begin{aligned}
i \ddot{a} & =a^{*} c \\
i \dot{b} & =b^{*} c \\
i \dot{c} & =\frac{1}{4}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

The Euler-Lagrange Equations

We derive the Euler-Lagrange equations resulting from this averaged Lagrangian:

$$
\begin{aligned}
i \dot{a} & =a^{*} c \\
i \dot{b} & =b^{*} c, \\
i \dot{c} & =\frac{1}{4}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

We transform to new dependent variables:

$$
A=\frac{1}{2}(a+i b), \quad B=\frac{1}{2}(a-i b), \quad C=c .
$$

The Three-wave Equations

The equations for the transformed amplitudes are:

$$
\begin{aligned}
& i \dot{A}=B^{*} C \\
& i \dot{B}=C A^{*} \\
& i \dot{C}=A B
\end{aligned}
$$

These are the three-wave equations.

Invariants

The three-wave equations conserve

$$
\begin{aligned}
H & =\frac{1}{2}\left(A B C^{*}+A^{*} B^{*} C\right) \\
N & =|A|^{2}+|B|^{2}+2|C|^{2} \\
J & =|A|^{2}-|B|^{2} .
\end{aligned}
$$

The three-wave equations are completely integrable.

Manley-Rowe Relations

Physically significant combinations of N and J :

$$
\begin{aligned}
& N_{+} \equiv \frac{1}{2}(N+J)=|A|^{2}+|C|^{2}, \\
& N_{-} \equiv \frac{1}{2}(N-J)=|B|^{2}+|C|^{2} .
\end{aligned}
$$

These are the Manley-Rowe relations.
The quantities H, N_{+}and N_{-}provide three independent constants of the motion.

Constant N_{+}and constant N_{-}correspond to orthogonal circular cylinders in phase-space.

Surfaces of Revolution

THREE-WAVE SURFACE, J=0.2

THREE-WAVE SURFACE, $\mathrm{J}=0.3$

Motion is on the intersection with plane of constant X.

Darryl's Books on Geometric Mechanics

Ubiquity of the Three-Wave Equations

- Modulation equations for wave interactions in fluids and plasmas.
- Three-wave equations govern envelop dynamics of light waves in an inhomogeneous material; and phonons in solids.
- Maxwell-Schrödinger envelop equations for radiation in a two-level resonant medium in a microwave cavity.
- Euler's equations for a freely rotating rigid body (when $H=0$).

Analytical Solution of the 3WE

We can derive complete analytical expressions for the amplitudes and phases.

The amplitudes are expressed as elliptic functions. The phases are expressed as elliptic integrals.

The complete details are given in:
Lynch, Peter, and Conor Houghton, 2004:
Pulsation and Precession of the Resonant Swinging Spring. Physica D, 190,1-2, 38-62

Original Reference

First comprehensive analysis of elastic pendulum:
"Oscillations of an Elastic Pendulum as an Example of the Oscillations of Two Parametrically Coupled Linear Systems"

Vitt and Gorelik (1933).
Inspired by analogy with Fermi resonance of CO_{2}.
Translation of this paper available as
Historical Note \#3 (1999), Met Éireann, Dublin.

Vibrations of CO_{2} Molecule

RnR
SHO
Chaplygin
Routh

$$
2349 \mathrm{~cm}^{\wedge}-1
$$

$$
(030)
$$

$$
\begin{aligned}
\frac{1388 \mathrm{~cm}^{2}-1}{(100)} & \frac{}{(020)} \\
& \frac{667 \mathrm{~cm}^{\mathrm{N}-1}}{(010)}
\end{aligned}
$$

Symmetric stretch mode

Bending mode
Asymmetric stretch mode

The first few vibrational ener gy levels of the CO 2 m olecule

$\frac{1388}{667} \approx 2$

Monodromy in Quantum Systems

It is 80 years since the work of Vitt and Gorelik.
" Remarkably, the swinging spring still has something interesting to offer to the quantum study of the Fermi resonance."

The CO_{2} molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy
Richard Cushman, Holger Dullin, Andrea Giacobbe, Darryl Holm, Marc Joyeux, Peter Lynch, Dmitrií Sadovskií, and Boris Zhilinskií Published in Phys. Rev. Lett. (2004) "It is now tempting to think of experimental
quantum dynamical manifestations of monodromy:"

Outline

Introduction

Swinging Spring

Potential Vorticity

Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $l_{1}=I_{2}$
Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

Springs and Triads

In a Nutshell

A mathematical equivalence with
The Swinging Spring
sheds light on the dynamics of Resonant Rossby Waves
in the atmosphere．

Potential Vorticity Conservation

$$
\begin{aligned}
\zeta & =\text { Relative Vorticity, } \\
f & =\text { Planetary Vorticity, } \\
h & =\text { Fluid Depth. }
\end{aligned}
$$

From the Shallow Water Equations, we derive the principle of conservation of potential vorticity:

$$
\frac{d}{d t}\left(\frac{\zeta+f}{h}\right)=0
$$

Under the assumptions of quasi-geostrophic theory, the dynamics reduce to an equation for ψ alone:

$$
\frac{\partial}{\partial t}\left[\nabla^{2} \psi-F \psi\right]+\left\{\frac{\partial \psi}{\partial x} \frac{\partial \nabla^{2} \psi}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \nabla^{2} \psi}{\partial x}\right\}+\beta \frac{\partial \psi}{\partial x}=0
$$

This is the barotropic QG potential vorticity equation (BQGPVE) aka the Charney-Hasegawa-Mima Equation,

Rossby Waves

Wave-like solutions of the vorticity equation:

$$
\psi=A \cos (k x+\ell y-\sigma t)
$$

satisfies the equation provided

$$
\sigma=-\frac{k \beta}{k^{2}+\ell^{2}+F}
$$

This is the celebrated Rossby wave formula
Nonlinear term vanishes for single Rossby wave: A pure Rossby wave is solution of nonlinear equation.

When there is more than one wave present, this is no longer true: the components interact with each other through the nonlinear terms.

SS
PV
RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ

Resonant Rossby Wave Triads

Case of special interest: Two wave components produce a third such that its interaction with each generates the other.
By a multiple time-scale analysis we derive the modulation equations for the wave amplitudes:

$$
\begin{aligned}
i \dot{A} & =B^{*} C \\
i \dot{B} & =C A^{*} \\
i \dot{C} & =A B
\end{aligned}
$$

[Canonical form of the three-wave equations].

The Spring Equations and the

 Triad Equations are areMathematically Identical!

Numerical Example of Resonance

Method of numerical solution of the PDE:

$$
\frac{\partial}{\partial t}\left[\nabla^{2} \psi-F \psi\right]+\left\{\frac{\partial \psi}{\partial x} \frac{\partial \nabla^{2} \psi}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \nabla^{2} \psi}{\partial x}\right\}+\beta \frac{\partial \psi}{\partial x}=0
$$

- Potential vorticity, $q=\left[\nabla^{2} \psi-F \psi\right]$ is stepped forward (with leap-frog method)
- ψ is obtained by solving a Helmholtz equation with periodic boundary conditions
- The Jacobian term is discretized following Arakawa (to conserve energy and enstrophy)
- Amplitude is chosen very small.

Therefore, interaction time is very long.

WAVE 3

INITIAL FIELD

Components of a resonant Rossby wave triad All fields are scaled to have unit amplitude.

Variation with time of the amplitudes of three components of the stream function.

Stream function at three times during an integration of duration $T=4800$ days.

Precession of Triads

- Analogies: Interesting — Equivalences: Useful!

Since the same equations apply to both the spring and triad systems, the stepwise precession of the spring must have a counterpart for triad interactions.

Precession of Triads

- Analogies: Interesting — Equivalences: Useful!

Since the same equations apply to both the spring and triad systems, the stepwise precession of the spring must have a counterpart for triad interactions.

In terms of the variables of the three-wave equations, the semi-axis major and azimuthal angle θ are

$$
A_{\mathrm{maj}}=\left|A_{1}\right|+\left|A_{2}\right|, \quad \theta=\frac{1}{2}\left(\varphi_{1}-\varphi_{2}\right) .
$$

Initial conditions chosen as for the spring (by means of the transformation relations).

Initial field scaled to ensure that small amplitude approximation is accurate.

Polar plot of $A_{\text {maj }}$ versus θ for resonant triad.

Horizontal projection of spring solution, y vs. x. UCD -

Polar plots of $A_{\text {maj }}$ versus θ.

(These are the quantities for the Triad, which correspond to the horizontal projection of the swinging spring.)

- The Star-Iike pattern is immediately evident.
- Precession angle again about 30°.

This is remarkable, and illustrates the value of the equivalence:

> Phase precession for Rossby wave triads had not been noted before.

Resonant interactions are important for energy distribution in the atmosphere. They play a central rôle in Wave Turbulence Theory.

Outline

Introduction

Swinging Spring

Potential Vorticity

Rock'n'Roller

Perturbed SHO

Sergey Chaplygin

Routh Sphere: $\mathrm{I}_{1}=\mathrm{I}_{2}$
Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

Candle-holders from Copenhagen

Fireballs (designer: Pernille Vea)

The RnR: a Topless Bowling-ball

Recession

Globular Cluster: Messier 54, NGC 6715 Class III Extragalactic Globular Cluster.

Box and Loop Orbits: Globular Cluster

Two orbits in a logarithmic gravitational potential. Left: a box orbit. Right: a loop orbit.

Galactic Dynamics. Binney and Tremaine (2008) [pg. 174]

Box and Loop Orbits: Rock'n'roller

Trajectory of the Rock'n'roller in $\theta-\phi$-plane (θ radial, ϕ azimuthal) with $\epsilon=0.1$.

Box and Loop Orbits: Perturbed SHO

Box and Loop orbits for the perturbed SHO.

PV RnR
SHO
Chaplygin
Routh
Quaternions Billiards
Squ/Squ

Box and Loop Orbits: Billiards

Box and Loop orbits on a billiard table.

The RnR: Main Topics

- Two types of trajectories: boxes and loops.
- Simple model: Perturbed 2D harmonic oscillator.
- Small-amplitude motion of rock'n'roller.
- Equations of motion in quaternionic form.
- Recession is associated with box orbits.

Motivation

One of the motivations for studying the Rock'n'roller is the hope of finding an invariant of the motion in addition to the energy. This expectation arises from the symmetry of the body.

For the general Chaplygin Sphere, there is a finite angle δ between the principal axis corresponding to I_{3} and the line joining the centres of gravity and symmetry. For the Rock'n'roller, this angle is zero and the Lagrangian is independent of the azimuthal angle ϕ.

However, we have not found a second invariant and, considering the non-holonomic nature of the problem, its existence remains an open question.

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock'n'Roller

Perturbed SHO

Sergey Chaplygin
 Routh Sphere: $I_{1}=I_{2}$

Quaternion Formulatior

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ

The Perturbed Harmonic Oscillator

Unperturbed system: 2D SHO with equal frequencies:

$$
L_{0}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{1}{2} \omega_{0}^{2}\left(x^{2}+y^{2}\right)
$$

The perturbed system has Lagrangian:

$$
L=L_{0}-\delta y^{2}-\epsilon r^{4},
$$

where $\delta \ll \omega_{0}^{2}$ and $\epsilon \ll 1$.
The δ-term breaks the 1 : 1 resonance.
The ϵ-term is a radially symmetric stiffening.

To analyse the system, we assume a solution
$x(t)=\Re\left\{A(t) \exp \left(i \omega_{0} t\right)\right\} \quad y(t)=\Re\left\{B(t) \exp \left(i \omega_{0} t\right)\right\}$
and average the Lagrangian over the fast motion.
We let $A=|A| \exp (i \alpha)$ and $B=|B| \exp (i \beta)$.
Defining $W=|A|^{2}-|B|^{2}$ and $\phi=\alpha-\beta$, we have

$$
\begin{aligned}
\frac{d W}{d \tau} & =\lambda\left(1-W^{2}\right) \sin \phi \cos \phi \\
\frac{d \phi}{d \tau} & =\lambda W \sin ^{2} \phi-1
\end{aligned}
$$

where $\lambda=2 \epsilon U / \delta$ is a non-dimensional parameter.

Again,

$$
\begin{aligned}
\frac{d W}{d \tau} & =\lambda\left(1-W^{2}\right) \sin \phi \cos \phi \\
\frac{d \phi}{d \tau} & =\lambda W \sin ^{2} \phi-1
\end{aligned}
$$

These are the canonical equations for the Hamiltonian

$$
H=\frac{1}{2} \lambda\left(1-W^{2}\right) \sin ^{2} \phi+W .
$$

Phase portraits ($W-\phi$ plane) for the perturbed SHO. Left panel: $\lambda=0.5$. Right panel: $\lambda=2.0$.

Box and Loop Orbits: Perturbed SHO

Box and Loop orbits for the perturbed SHO.

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $I_{1}=I_{2}$
Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

Sergey Alexeyevich Chaplygin

Sergey Alexeyevich Chaplygin

Sergey Alexeyevich Chaplygin (1869-1942) was a Russian physicist, mathematician, and mechanical engineer. He is known for mathematical formulas such as Chaplygin's equation.

He graduated in 1890 from Moscow University, and later became a professor. He taught mechanical engineering at Moscow's Woman College in 1901, and applied mathematics at Moscow School of Technology, 1903.

Chaplygin was elected to the Russian Academy of Sciences in 1924. The lunar crater Chaplygin and town Chaplygin are named in his honor. His "Collected Works" in four volumes were published in 1948.

The Hierarchy of Spheres

Schematic Diagram of Chaplygin Sphere

UCD

SHO Chaplygin
Routh
Quaternions
Billiards
Squ/Squ

RnR: The Physical System

Consider a spherical rigid body with an asymmetric mass distribution.

Specifically, we consider a loaded sphere.
The dynamics are essentially the same as for the tippe-top, which has been studied extensively.

Unit radius and unit mass.
Centre of mass off-set a distance a from the centre.
Moments of inertia $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}, with $\mathrm{I}_{1} \approx \mathrm{I}_{2}<\mathrm{I}_{3}$.

The Lagrangian

The Lagrangian of the system is easily written down:

$$
L=\frac{1}{2}\left(\mathbf{l}_{1} \omega_{1}^{2}+\mathbf{l}_{2} \omega_{2}^{2}+\mathbf{I}_{3} \omega_{3}^{2}\right)+\frac{1}{2}\left(\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}\right)-g a(1-\cos \theta)
$$

The equations may then be written (in vector form):

$$
\Sigma \dot{\theta}=\omega, \quad K \dot{\omega}=\mathbf{P}_{\omega}
$$

where the matrices Σ and K are known and

$$
\mathbf{P}_{\omega}=\left(\begin{array}{c}
-\left(g+\omega_{1}^{2}+\omega_{2}^{2}\right) a s \chi+\left(\mathbf{I}_{2}-\mathbf{I}_{3}-a f\right) \omega_{2} \omega_{3} \\
\left(g+\omega_{1}^{2}+\omega_{2}^{2}\right) a s \sigma+\left(\mathbf{l}_{3}-\mathbf{I}_{1}+a f\right) \omega_{1} \omega_{3} \\
\left(\mathbf{I}_{1}-\mathbf{l}_{2}\right) \omega_{1} \omega_{2}+a s\left(-\chi \omega_{1}+\sigma \omega_{2}\right) \omega_{3}
\end{array}\right)
$$

Note that neither K nor \mathbf{P}_{ω} depends explicitly on ϕ.

Box and Loop Orbits: Rock'n'roller

Trajectory of the Rock'n'roller in $\theta-\phi$-plane (θ radial, ϕ azimuthal) with $\epsilon=0.1$.

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $\mathbf{I}_{1}=\mathbf{I}_{\mathbf{2}}$

Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ
\square 1

The Routh Sphere: $\mathbf{I}_{\mathbf{1}}=\mathbf{I}_{\mathbf{2}}$

THE ADVANCED PART
OF 4 TBEATISE OX EME
DINAMICS OF A SYSTEM OF
RIGID BODIES.
BEISG PART II OF A TREATISE ON THE WHOLE

Welith mumerous Examples.

Br
EDWARD JOHX ROUTH, SoD, LLD, F.RS, \&c.

SIXTH EDITION. REVISED AND ENLAGQED.

Cover of Routh's Dynamics Part II

In the Cambridge
Mathematical Tripos Examination of 1854,
James Clark Maxwell came second.
Edward John Routh came first (senior wrangler).

Constants of Motion for Routh Sphere

 In case $\mathrm{I}_{1}=\mathrm{I}_{2}$, there are three degrees of freedom and three constants of integration.The kinetic energy is

$$
K=\frac{1}{2}\left[u^{2}+v^{2}+w^{2}\right]+\frac{1}{2}\left[\mathbf{l}_{1}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+\mathbf{I}_{3} \omega_{3}^{2}\right]
$$

The potential energy is

$$
V=m g a(1-\cos \theta) .
$$

Since there is no dissipation,

$$
E=K+V=\text { constant } .
$$

Constants of Motion for Routh Sphere

Jellett's constant is the scalar product:

$$
C_{J}=\mathbf{L} \cdot \mathbf{r}=\mathbf{I}_{1} s\left(\sigma \omega_{1}+\chi \omega_{2}\right)+\mathbf{I}_{3} f \omega_{3}=\text { constant } .
$$

where $s=\sin \theta, f=\cos \theta-a, \sigma=\sin \psi$ and $\chi=\cos \psi$. [S O'Brien \& J L Synge first gave this interpretation.]

Routh's constant (difficult to interpret physically):

$$
C_{R}=\left[\sqrt{I_{3}+s^{2}+\left(\mathbf{l}_{3} / \mathbf{l}_{1}\right) f^{2}}\right] \omega_{3}=\text { constant } .
$$

Constant C_{R} implies conservation of sign of $\omega_{3} \ldots$
... but this does not automatically preclude recession!

Edward J Routh

John H Jellett

1831-1907
1817-1888

Edward J Routh

Edward John Routh (20 January 1831 to 7 June 1907), an English mathematician, noted as the outstanding coach of students preparing for the Mathematical Tripos examination of the University of Cambridge.

He also did much to systematize the mathematical theory of mechanics and created several ideas critical to the development of modern control systems theory.

In 1854, Routh graduated just above James Clerk Maxwell, as Senior Wrangler, sharing the Smith's prize with him. He coached over 600 pupils between 1855 and 1888, 27 of them making Senior Wrangler.

Known for: Routh-Hurwitz theorem, Routh stability criterion, Routh array, Routhian, Routh's theorem, Routh's algorithm, Kirchhoff-Routh function.

John H Jellett

J. H. Jellett was a native of Cashel, County Tipperary, the son of a clergyman. He graduated from Trinity College with honors in mathematics in 1838, and was elected to Fellowship in 1840. In 1847 he was appointed to the newly established chair of Natural Philosophy (Applied Mathematics), which he held until 1870.

Jellett was a scholar of considerable eminence and his publications cover the fields of pure and applied mathematics, notably the theory of friction and the properties of optically active solutions, as well as sermons and lectures on religious topics.
He was President of the Royal Irish Academy for five years from 1869, received the Royal Society's Medal in 1881 and an honorary degree from Oxford in 1887.

His politics were sufficiently liberal to make him an acceptable candidate to Gladstone who appointed him Provost of Trinity College Dublin in April 1881. He died in office on 19 February 1888.

Integrability of Routh Sphere

Using Routh's constant C_{R}, we have $\omega_{3}=\omega_{3}(\theta)$.
Then, using Jellett's constant C_{J}, we have $\omega_{2}=\omega_{2}(\theta)$.
Using the energy equation, we can now write:

$$
\dot{\theta}^{2}=f(\theta)
$$

For a given θ, both ω_{2} and ω_{3} are fixed: This confirms that recession is impossible.

Invariants of the Rock'n'roller

The only known constant of motion is total energy E.
There remains a symmetry: the system is unchanged under the transformation

$$
\phi \longrightarrow \phi+\delta \phi
$$

The spirit of Noether's Theorem would indicate another constant associated with this symmetry;

So far, we have not found a "missing constant".

Outline

Introduction
 Swinging Spring
 Potential Vorticity
 Rock'n'Roller
 Perturbed SHO
 Sergey Chaplygin
 Routh Sphere: $I_{1}=I_{2}$

Quaternion Formulation

Billiards \& Ballyards

Squircles \& Squovals
Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions
Billiards
Squ/Squ

Quaternionic Formulation

The Euler angles have a singularity when $\theta=0$ The angles ϕ and ψ are not uniquely defined there.

We can obviate this problem by using Euler's symmetric parameters:

$$
\begin{array}{ll}
\gamma=\cos \frac{1}{2} \theta \cos \frac{1}{2}(\phi+\psi) & \xi=\sin \frac{1}{2} \theta \cos \frac{1}{2}(\phi-\psi) \\
\zeta=\cos \frac{1}{2} \theta \sin \frac{1}{2}(\phi+\psi) & \eta=\sin \frac{1}{2} \theta \sin \frac{1}{2}(\phi-\psi)
\end{array}
$$

These are the components of a unit quaternion

$$
\begin{gathered}
\mathbf{q}=\gamma+\xi \mathbf{i}+\eta \mathbf{j}+\zeta \mathbf{k} \\
\gamma^{2}+\xi^{2}+\eta^{2}+\zeta^{2}=1
\end{gathered}
$$

William Rowan Hamilton (1805-1865)

Quaternion Equations

Euler's symmetric parameters,
or

Euler-Rodrigues parameters:

$$
\begin{aligned}
\gamma=\cos \frac{1}{2} \theta \cos \frac{1}{2}(\phi+\psi) & \xi & =\sin \frac{1}{2} \theta \cos \frac{1}{2}(\phi-\psi) \\
\zeta=\cos \frac{1}{2} \theta \sin \frac{1}{2}(\phi+\psi) & \eta & =\sin \frac{1}{2} \theta \sin \frac{1}{2}(\phi-\psi)
\end{aligned}
$$

The components of angular velocity are

$$
\begin{aligned}
& \omega_{1}=2[\gamma \dot{\xi}-\xi \dot{\gamma}+\zeta \dot{\eta}-\eta \dot{\zeta}] \\
& \omega_{2}=2[\gamma \dot{\eta}-\eta \dot{\gamma}+\xi \dot{\zeta}-\zeta \dot{\xi}] \\
& \omega_{3}=2[\gamma \dot{\zeta}-\zeta \dot{\gamma}+\eta \dot{\xi}-\xi \dot{\eta}]
\end{aligned}
$$

Lagrangian and Hamiltonian

The quaternion equations arise from the Lagrangian

$$
L=\frac{1}{2}\left(k_{1} \dot{\mu}^{2}+k_{2} \dot{\nu}^{2}\right)-\frac{1}{2}\left(k_{1} \tilde{\Omega}_{1}^{2} \mu^{2}+k_{2} \tilde{\Omega}_{2}^{2} \nu^{2}\right)+k_{1} k_{2}(\mu \dot{\nu}-\nu \dot{\mu})
$$

where $(\gamma, \zeta, \xi, \eta) \rightarrow(\gamma, \zeta, \mu, \nu)$.
The generalized momenta are

$$
p_{\mu}=k_{1}\left(\dot{\mu}-k_{2} \nu\right) \quad \text { and } \quad p_{\nu}=k_{2}\left(\dot{\nu}+k_{2} \mu\right)
$$

The Hamiltonian is

$$
\begin{aligned}
H=\frac{1}{2}\left(\frac{p_{\mu}^{2}}{k_{1}}+\frac{p_{\nu}^{2}}{k_{2}}\right) & -\left[k_{1} \mu p_{\nu}-k_{2} \nu p_{\mu}\right] \\
& +\frac{1}{2}\left[k_{1}\left(k_{1} k_{2}+\tilde{\Omega}_{1}^{2}\right) \mu^{2}+k_{2}\left(k_{1} k_{2}+\tilde{\Omega}_{2}^{2}\right) \nu^{2}\right]
\end{aligned}
$$

Constants of the Motion

The numerical value of the Hamiltonian (energy) is

$$
E_{\mu+\nu}=\frac{1}{2}\left(k_{1} \dot{\mu}^{2}+k_{2} \dot{\nu}^{2}\right)+\frac{1}{2}\left(k_{1} \tilde{\Omega}_{1}^{2} \mu^{2}+k_{2} \tilde{\Omega}_{2}^{2} \nu^{2}\right)
$$

An additional constant of the motion can be found:

$$
\begin{aligned}
& K_{1}=\left(\frac{\lambda_{2} \dot{\mu}+\beta_{2} \nu}{\beta_{1} \lambda_{2}-\beta_{2} \lambda_{1}}\right)^{2}+\left(\frac{\dot{\dot{\nu}}-\beta_{2} \lambda_{\mu} \mu}{\beta_{1} \lambda_{1}-\beta_{2} \lambda_{2}}\right)^{2}=\mu_{1}^{2}, \\
& K_{2}=\left(\frac{\lambda_{1} \dot{\mu}+\beta_{1} \nu}{\beta_{1} \lambda_{2}-\beta_{2} \lambda_{1}}\right)^{2}+\left(\frac{\dot{\dot{\nu}}-\beta_{1} \lambda_{1} \mu}{\beta_{1} \lambda_{1}-\beta_{2} \lambda_{2}}\right)^{2}=\mu_{2}^{2} .
\end{aligned}
$$

Numerical tests confirm that K_{1} and K_{2} are constant.

Aspiration

To find an invariant of the motion of the Rock'n'roller in addition to the energy.

This expectation arises from the symmetry of the body.
In view of the non-holonomic nature of the problem, its existence remains an open question.

However, the box and loop orbits suggest that a search would be worthwhile.

Aspiration

To find an invariant of the motion of the Rock'n'roller in addition to the energy.

This expectation arises from the symmetry of the body.
In view of the non-holonomic nature of the problem, its existence remains an open question.

However, the box and loop orbits suggest that a search would be worthwhile.

In elliptical billiards there is an "extra" invariant: $p_{1} \times p_{2}$.

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock＇n＇Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere：$I_{1}=I_{2}$
Quaternion Formulation

Billiards \＆Ballyards

Squircles \＆Squovals
Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions Billiards
Squ／Squ

Kalejdoskop Matematyczny（1939）

Billiard Shot leading to a Loop Orbit

Billiard Shot leading to a Box Orbit

Box and Loop Orbits: Billiards

Box and Loop orbits on an elliptical billiard table.
Extra invariant: $p_{1} \times p_{2}$ is conserved.

Billiards and Ballyards

Main idea:
Billiard Table with Soft Cushions \Longrightarrow Ballyard.
Playing surface no longer quite flat.

Figure : Potentials $2 x^{N}$ for $N \in\{2,4,8,16\}$.

Back to Basics: 1 Dimension

A particle in a parabolic well $z=\frac{1}{2} z_{1} x^{2}$ has Lagrangian

$$
L=\frac{1}{2} \dot{x}^{2}\left(1+z_{1}^{2} x^{2}\right)-\frac{1}{2}\left(g z_{1}\right) x^{2}
$$

The Euler-Lagrange equations are

$$
\left(1+z_{1}^{2} x^{2}\right) \ddot{x}+g z_{1} x+z_{1}^{2} x \dot{x}^{2}=0
$$

Back to Basics: 1 Dimension

Figure : Potentials x^{2} and $x^{2} / 5$.

Back to Basics: 1 Dimension

Figure : Potentials x^{2} and x^{10}.

Back to Basics: 1 Dimension

To linearize, make z_{1} small but keep $g z_{1}$ fixed:

$$
\ddot{x}+\left(g z_{1}\right) x=0 .
$$

This is a geometric/gravimetric approximation.
We are flattening the table while turning up gravity.

Moving to 2 Dimensions: Circular Table

A particle in a paraboloidal well with axial symmetry, $z=\frac{1}{2} z_{1} r^{2}$ has Lagrangian

$$
L=\frac{1}{2}\left[\left(1+z_{1}^{2} r^{2}\right) \dot{r}^{2}+r^{2} \dot{\theta}^{2}\right]-\frac{1}{2}\left(g z_{1}\right) r^{2}
$$

As before, we let $z_{1} \rightarrow 0$ with $\frac{1}{2} g z_{1}=1$.
Since θ is a cyclic variable, $\partial L / \partial \dot{\theta}=r^{2} \dot{\theta}$ is constant.
My Gaffe: Eliminate $\dot{\theta}$ from L using $h=r^{2} \dot{\theta}$.
Correct: Get E-L equation, then use $h=r^{2} \dot{\theta}$.

Circular Ballyards

Since the restoring force is central, the angular momentum is conserved.

The system is integrable.

Potentials with Increasing Power

Figure : Potentials $2 x^{2}, 2 x^{4}, 2 x^{8}$, and $2 x^{16}$.

Changing the Potential

Figure : N=2.

Changing the Potential

Figure : N=4.

UCD DUs,

Changing the Potential

Figure : N=8. UCB yublin

Changing the Potential

Figure : N=16.

Changing the Potential

Figure : $\mathrm{N}=32$.

Changing the Potential

Figure : $\mathrm{N}=64$.

Elliptic Ballyards：$N=4$

Left：Angular Momentum varies from -6 to +6 ． Right：Angular Momentum varies from－4 to－10．

Additional Constant of Motion not found（yet！）

Outline

Introduction
Swinging Spring
Potential Vorticity
Rock'n'Roller
Perturbed SHO
Sergey Chaplygin
Routh Sphere: $l_{1}=I_{2}$
Quaternion Formulation
Billiards \& Ballyards

Squircles \& Squovals

Conclusion

PV RnR
SHO
Chaplygin
Routh
Quaternions
Billiards

Squircular Ballyard Potential

$$
x^{4}+y^{4}=1
$$

Figure : Potential, $V(x), N=8$. Left: VER-X. Right: HOR-X.

Squircular Ballyard

Figure : $N=2 . I C s=1$.

Squircular Ballyard

Figure : $N=2$. ICs $=2$.

Squircular Ballyard

Figure : $N=2 . \operatorname{ICs}=3$.

Squovular Ballyard

$$
\left(\frac{x}{a}\right)^{8}+\left(\frac{y}{b}\right)^{8}=1
$$

Figure : Aspect ratio 2 : 1.

Outline

Introduction

Swinging Spring

Potential Vorticity
Rock'n'Roller
Perturbed SHO

Sergey Chaplygin

Routh Sphere: $I_{1}=I_{2}$
Quaternion Formulation
Billiards \& Ballyards
Squircles \& Squovals
Conclusion
Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin

Conclusion

AIM:
To find an invariant of the motion of the Rock'n'roller in addition to the energy.

This expectation arises from the symmetry of the body.
The box and loop orbits suggest that a search would be worthwhile.

The investigation of elliptical billiards may be fruitful.
But the goal is not yet reached

Conclusion

"I Still Haven't Found What I'm Looking For"

Conclusion

"I Still Haven't Found What l'm Looking For"
Let's hope for success by Darryl's 75th Birthday.

Thank You All

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin

Thank You All

and

Happy Birthday, Darryl!

