Recent Developments in Digital Filter Initialization

Peter Lynch, Met Éireann, Dublin, Ireland

IUGG General Assembly, Sapporo, 1 July, 2003. JSM13

The Idea of Filtering

A primitive filter model:

$$Good/Bad/Ugly \implies$$
 Filter \longrightarrow Good

Suppose the input consists of a low-frequency (LF) signal contaminated by high-frequency (HF) noise. We use a low-pass filter which rejects the noise.

Some Applications of Digital Filters

- Telecommunications
 - Digital Switching / Multiplexing / Touch-tone Dialing
- Audio Equipment
 - Compact Disc Recording / Hi-Fi Reproduction
- Speech Processing
 - -Voice Recognition / Speech Synthesis
- Image Processing
 - Image Enhancement / Data Compression
- Remote Sensing
 - Doppler Radar / Sonar Signal Processing
- Geophysics
 - -Seismology / Initialization for NWP.

Non-recursive Digital Filter

Consider a discrete time signal,

 $\{\cdots, x_{-2}, x_{-1}, x_0, x_1, x_2, \cdots\}$

For example, x_n could be the value of surface pressure at time $n\Delta t$ at a specific location, say, Sapporo.

Nonrecursive Digital Filter:

A nonrecursive digital filter is defined by

$$y_n = \sum_{k=-N}^{+N} h_k x_{n-k}$$

The inputs are $\{x_n\}$. The outputs are $\{y_n\}$. The outputs are <u>weighted sums of the inputs</u>.

Application to Initialization

Model integrated forward for *N* **steps:**

$$y_{\text{FOR}} = \frac{1}{2}h_0x_0 + \sum_{n=1}^{N}h_{-n}x_n$$

N-step 'hindcast' is made:
 $y_{\text{BAK}} = \frac{1}{2}h_0x_0 + \sum_{n=-1}^{-N}h_{-n}x_n$

The two sums are combined:

 $y_0 = y_{\rm FOR} + y_{\rm BAK}$

Digital Filters as Convolutions

Consider the nonrecursive digital filter

$$y_n = \sum_{k=-N}^{+N} h_k x_{n-k} \,.$$

The indices of x and a run in opposite directions:

$$h_{-N}, \cdots, h_{-1}, h_0, h_1, \cdots, h_N$$

 $x_{n+N}, \cdots, x_{n+1}, x_n, x_{n-1}, \cdots, x_{n-N}$

so that the sum is in the form of a finite convolution:

$$y_n = \{h_n\} \star \{x_n\}.$$

By a careful choice of the coefficients h_n , we can design a filter with the desired selection properties.

Frequency Response of FIR Filter

Let x_n be the input and y_n the output. Assume $x_n = \exp(in\theta)$ and $y_n = H(\theta) \exp(in\theta)$.

The transfer function $H(\theta)$ is then

$$H(\theta) = \sum_{k=-N}^{N} h_k e^{-ik\theta} \,.$$

This gives H once the coefficients h_k have been specified. However, what is really required is the opposite: to derive coefficients which will yield the desired response.

This *inverse problem* has no unique solution, and numerous techniques have been developed.

Design of Nonrecursive Filters

We consider the simplest possible design technique, using a truncated Fourier series modified by a window function.

Consider a sequence

 $\{\cdots, x_{-2}, x_{-1}, x_0, x_1, x_2, \cdots\}$

with low and high frequency components.

To filter out the high frequencies one may proceed According to the following Three-step method:

- **1.** Calculate the Fourier transform $X(\theta)$ of x_n ;
- 2. Set the coefficients of the high frequencies to zero;
- 3. Calculate the inverse transform.

Three-Step Procedure

- **1.** Calculate the Fourier transform $X(\theta)$ of x_n ;
- 2. Set the coefficients of the high frequencies to zero;
- 3. Calculate the inverse transform.

Step [1] is a forward Fourier transform:

$$X(\theta) = \sum_{n = -\infty}^{\infty} x_n e^{-in\theta},$$

where $\theta = \omega \Delta t$ is the digital frequency. $X(\theta)$ is 2π -periodic.

Step [2] may be performed by multiplying $X(\theta)$ by an appropriate weighting function $H(\theta)$.

Step [3] is an inverse Fourier transform:

Filtering as Convolution

Step [3] is an inverse Fourier transform. The product $H(\theta) \cdot F(\theta)$ is the transform of the convolution of $\{h_n\}$ with $\{x_n\}$:

$$y_n = (h * x)_n = \sum_{k=-\infty}^{\infty} h_k x_{n-k}.$$

In practice, we must truncate the sum:

$$y_n = \sum_{k=-N}^N h_k x_{n-k}.$$

The finite approximation to the convolution is formally identical to a nonrecursive digital filter.

Filter Coefficients

The function $H(\boldsymbol{\theta})$ is called the

- System Function
- Transfer Function
- Response Function.
- Typically, $H(\theta)$ is a step function:

$$\begin{array}{ll} H(\theta) \,=\, 1, & |\theta| \leq |\theta_c| \, ; \\ H(\theta) \,=\, 0, & |\theta| > |\theta_c| \, . \end{array}$$

$$h_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\theta) e^{in\theta} d\theta \quad ; \quad H(\theta) = \sum_{n = -\infty}^{\infty} h_n e^{-in\theta}$$

$$h_n = \frac{\sin n\theta_c}{n\pi}.$$

Windowing

Truncation gives rise to Gibbs oscillations.

The response of the filter is improved if h_n is multiplied by the Lanczos window

$$w_n = \frac{\sin\left(n\pi/(N+1)\right)}{n\pi/(N+1)}$$

$$\hat{h}_n = w_n \left(\frac{\sin(n\theta_c)}{n\pi} \right).$$

$$H(\theta) = \sum_{k=-N}^{N} \hat{h}_k e^{-ik\theta} = \left[\hat{h}_0 + 2\sum_{k=1}^{N} \hat{h}_k \cos k\theta\right]$$

Optimal Filter Design

This method uses the Chebyshev alternation theorem to obtain a filter whose <u>maximum error</u> in the pass- and stopbands <u>is minimized</u>. Such filters are called Optimal Filters.

References:

- Hamming (1989)
- Oppenheim and Schafer (1989)

Optimal Filters require solution of complex nonlinear systems of equations. The algorithm for calculation of the coefficients involves about one thousand lines of code.

The **Dolph Filter** is a special optimal filter, which is much easier to calculate.

The Dolph-Chebyshev Filter

This filter is constructed using Chebyshev polynomials:

$$T_n(x) = \cos(n\cos^{-1}x),$$
 $|x| \le 1$
 $T_n(x) = \cosh(n\cosh^{-1}x),$ $|x| > 1.$

Clearly, $T_0(x) = 1$ and $T_1(x) = x$. Also:

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad n \ge 2.$$

Now define a function in the frequency domain: $H(\theta) = \frac{T_{2M} \left(x_0 \cos \left(\theta / 2 \right) \right)}{T_{2M} (x_0)}$

where $x_0 > 1$. Let θ_s be such that $x_0 \cos(\theta_s/2) = 1$. The form of $H(\theta)$ is that of a low-pass filter with a cut-off at $\theta = \theta_s$.

 $H(\theta)$ can be written as a finite expansion

$$H(\theta) = \sum_{n=-M}^{+M} h_n \exp(-in\theta).$$

The coefficients $\{h_n\}$ may be evaluated:

$$h_n = \frac{1}{N} \left[1 + 2r \sum_{m=1}^M T_{2M} \left(x_0 \cos \frac{\theta_m}{2} \right) \cos m\theta_n \right] ,$$

where $|n| \leq M$, N = 2M + 1 and $\theta_m = 2\pi m/N$. The coefficients h_n are real and $h_{-n} = h_n$.

The weights $\{h_n : -M \le n \le +M\}$ define the Dolph-Chebyshev or, for short, Dolph filter.

An Example of the Dolph Filter

We choose the following parameters:

- Cut-off period: $\tau_s = 3 \,\mathrm{h}$
- Time-step: $\Delta t = \frac{1}{8}h = 7\frac{1}{2}min$.
- Filter span: $T_{\rm S} = 2 \,\mathrm{h}$.
- Filter order: N = 17.

Then the digital cut-off frequency is

$$\theta_s = 2\pi \Delta t / \tau_s \approx 0.26$$
.

This filter attenuates high frequency components by more than $12 \,\mathrm{dB}$. Double application gives $25 \,\mathrm{dB}$ attenuation.

Frequency response for Dolph filter with span $T_S = 2h$, order N = 2M + 1 = 17 and cut-off $\tau_s = 3h$. Results for single and double application are shown.

Implementation in HIRLAM:

Hop, Skip and Jump

The initialization and forecast are performed in three stages:

- Hop: Adiabatic backward integration. Output filtered to give fields valid at $t = -\frac{1}{2}T_{\rm S}$.
- Skip: Forward diabatic run spanning range $[-\frac{1}{2}T_{\rm S}, +\frac{1}{2}T_{\rm S}]$. Output filtered to provide initialized values.
- **Jump:** Normal forecast, covering desired range.

Mean absolute surface pressure tendency for three forecasts. Solid: uninitialized analysis (NIL). Dashed: Normal mode initialization (NMI). Dotted: Digital filter initialization (DFI). Units are hPa/3 hours.

Changes in Surface Pressure

Table 1: Changes in model prognostic variables at analysis time and for the 24-hour forecast, induced by DFI. Units are hPa.

Psurf	Analysis	Forecast
	max rms	max rms
	2.21 .493	.924 .110

Root-mean-square (solid) and bias (dashed) errors for mean sea-level pressure. Average over thirty Fastex forecasts. Green: reference run (NMI); Red: DFI run.

Application to Richardson Forecast

NIL:
LANCZOS:
DOLPH:

 $\frac{dp_s}{dt} = +145 \text{ hPa/6 h.}$ $\frac{dp_s}{dt} = -2.3 \text{ hPa/6 h.}$ $\frac{dp_s}{dt} = -0.9 \text{ hPa/6 h.}$

Observations: Barometer steady!

IDFI in GME Model at DWD

A DFI scheme is used in the initialization of the GME model at the Deutscher Wetterdienst. Incremental DFI is applied: Only the analysis increments are filtered.

$$\begin{array}{rcl} X_A &=& X_F + (X_A - X_F) \\ X_A &\longrightarrow \bar{X}_A \,, & X_F \longrightarrow \bar{X}_F \\ \bar{X}_A &=& X_F + (\bar{X}_A - \bar{X}_F) \end{array}$$

If analysis increment vanishes, filter has no effect.

The scheme is applied in vertical normal mode space. The first ten vertical modes are filtered, the remaining 21 of the 31-level GME are left unchanged.

The damping of physical processes, such as precipitation and convection, by the IDFI is thus reduced to an acceptably low level.

Half-sinc Filters

An ideal low-pass filter has an impulse response

$$h_n = \frac{\sin n\theta_c}{n\pi} = \left(\frac{\theta_c}{\pi}\right) \operatorname{sinc}\left(\frac{n\theta_c}{\pi}\right), \quad n = \dots, -2, -1, 0, 1, 2, \dots$$

For a causal filter we require $n \ge 0$. Then

$$h_n = \frac{\sin n\theta_c}{n\pi}, \qquad n = 0, 1, \dots, N-1.$$

We refer to this sequence as a half-sinc sequence. The frequency response may be written

$$\sum_{n=0}^{N-1} h_n e^{in\theta} = H(\theta) = M(\theta) e^{i\varphi(\theta)}.$$

Boundary Filters

The group delay is defined as $\delta = -d\varphi/d\theta$.

$$\delta_0 = \delta(0) = \sum nh_n$$

A boundary filter must be zero-delay with $\delta_0 = 0$.

For the half-sinc sequence, this can be satisfied if we <u>truncate after an exact number of wavelengths</u>:

$$\sum_{n=0}^{N-1} nh_n = \frac{1}{\pi} \sum_{n=0}^{N-1} \sin n\theta_c = 0$$

provided $(N-1)\theta_c = 2\pi K$ for some integer K.

Dashed curves: Frequency responses $H(\theta)$ for seventeen halfsincs with varying spans. Solid curve: weighted sum of seventeen half-sincs, to reduce intermediate frequency boost.

Time evolution, during a 3-hour forecast, of the area-averaged absolute value of the surface pressure tendency (units: hPa per 3 hours) for three forecasts. **Dot-dashed line:**No initialization. Dotted line: BFI scheme (Sinc Filter). Solid line: Reference DFI scheme.

Padé Filtering

 $\star\star\star$ Work in Progress $\star\star\star$

The Padé approximation represents a sequence of length N by a sum of M = N/2 components of complex exponential form:

$$x_n = \sum_{m=1}^M c_m \gamma_m^n \,.$$

The Z-transform of $\{x_n\}$ is then the sum of M terms

$$X(z) = \sum_{m=1}^{M} \left(\frac{c_m z}{z - \gamma_m}\right)$$

The Z-transform has M simple poles at positions $z = \gamma_m$ with residues c_m . We approximate the Z-transform of an arbitrary finite sequence by a function with M = N/2 components:

$$\Xi(z) = \sum_{m=1}^{M} \left(\frac{c_m z}{z - \gamma_m} \right)$$

The poles are obtained by solving a Toeplitz system.

The residues are obtained from a Vandermonde system.

Filtering the Input Sequence

To filter an input signal, we select a weighting function $H(\gamma)$ such that for components corresponding to low frequency oscillations or long time-scales it is exactly or approximately equal to unity, and for components corresponding to high frequencies or short time-scales it is small.

Then we define the filtered transform to be

$$\bar{X}(z) = \sum_{m=1}^{M} \left(\frac{H(\gamma_m) c_m z}{z - \gamma_m} \right) \,.$$

On inverting this, we get the filtered signal

$$\bar{x}_n = \sum_{m=1}^M H(\gamma_m) c_m \gamma_m^n \,.$$

Note that the <u>complete freedom of choice</u> of H(z) is a powerful aspect of this filtering procedure. Warning: There are Pitfalls in the Numerical Procedure.

DF as a Constraint in 4DVAR

If the system is noise-free at a particular time, *i.e.*, is close to the slow manifold, it will remain noise-free, since the slow manifold is an invariant subset of phase-space.

We consider a sequence of values $\{x_0, x_1, x_2, \cdots x_N\}$ and form the filtered value

$$\bar{x} = \sum_{n=0}^{N} h_n x_n. \tag{1}$$

The evolution is constrained, so that the value at the midpoint in time is close to this filtered value, by addition of a term

$$J_c = \frac{1}{2}\mu ||x_{N/2} - \bar{x}||^2$$

to the cost function to be minimized (μ is an adjustable parameter).

Schematic of smooth trajectory approximating observations.

$$J_c = \frac{1}{2}\mu ||x_{N/2} - \bar{x}||^2$$

It is straightforward to derive the adjoint of the filter.

Gauthier and Thépaut (2001) found that a digital filter weak constraint imposed on the low-resolution increments of the 4DVAR system of Météo-France:

- Efficiently controlled the emergence of fast oscillations
- Maintained a close fit to the observations.

The dynamical imbalance was significantly less in 4DVAR than in 3DVAR.

Fuller details: Gauthier and Thépaut (2001).

Advantages of DFI

- 1. No need to compute or store normal modes;
- 2. No need to separate vertical modes;
- 3. Complete compatibility with model discretisation;
- 4. Applicable to exotic grids on arbitrary domains;
- 5. No iterative numerical procedure which may diverge;
- 6. Ease of implementation and maintenance;
- 7. Applicable to all prognostic model variables;
- 8. Applicable to non-hydrostatic models.
- 9. Economic and effective Constraint in 4D-Var Analysis.