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Abstract—The dynamics of a spherical body with a non-uniform mass distribution rolling
on a plane were discussed by Sergey Chaplygin, whose 150th birthday we celebrate this year.
The Chaplygin top is a non-integrable system, with a colourful range of interesting motions.
A special case of this system was studied by Edward Routh, who showed that it is integrable.
The Routh sphere has a centre of mass offset from the geometric centre, but it has an axis of
symmetry through both these points, and equal moments of inertia about all axes orthogonal
to the symmetry axis. There are three constants of motion: the total energy and two quantities
involving the angular momenta.
It is straightforward to demonstrate that these quantities, known as the Jellett and Routh
constants, are integrals of the motion. However, their physical significance has not been
fully understood. In this paper, we show how the integrals of the Routh sphere arise from
Emmy Noether’s invariance identity. We derive expressions for the infinitesimal symmetry
transformations associated with these constants. We find the finite version of these symmetries
and provide their geometrical interpretation.
As a further demonstration of the power and utility of this method, we find the Noetherian
symmetries and corresponding integrals for a system introduced recently, the Chaplygin ball on
a rotating turntable, confirming that the known integrals are directly obtained from Noether’s
theorem.
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INTRODUCTION

This paper is a contribution to the celebration of the 150th birthday of Sergey Alexeyevich
Chaplygin (1869–1942), a renowned Russian physicist, mathematician, and mechanical engineer.
Amongst many other topics, Chaplygin studied the dynamics of a sphere rolling on a plane. For
this Chaplygin top, the mass distribution is eccentric, the three moments of inertia are distinct,
and the geometric centre does not, in general, lie on any of the principal axes.

A special case of this system was studied by Edward Routh [17]. The Routh sphere is a spherical
body with a non-uniform distribution of mass, free to roll without slipping on a plane surface. Its
centre of mass is offset from the geometric centre, but it has an axis of symmetry through both
these points, and equal moments of inertia about all axes orthogonal to the symmetry axis. This
distinguishes it from the more general case studied by Chaplygin [6].

Routh [17] showed that the Routh sphere has two constants of motion in addition to the energy,
and is an integrable system. The integrals or constants of motion, known as Jellett’s constant and
Routh’s constant, have been treated in many studies. We mention, in particular, the important
contributions [4, 7, 11, 12]. A simple proof that Jellett’s and Routh’s constants are integrals of
the motion is given in Gray and Nickel [10]. However, as remarked by these authors, “The precise
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physical significance of the Routh constant remains elusive . . . [and] it might be useful to try to
find a direct connection between this constant of the motion and the underlying symmetries of the
system” [10, p. 826]. This explicit connection is established in the present work.

Emmy Noether discovered a fundamental connection between symmetries or invariances of
dynamical systems and conserved quantities or integrals of the motion. For a historical review,
see [13]. In her seminal paper [16], Noether derived an identity valid whenever the action of the
system has an invariance. In the case of extremal flow, in which the Euler-Lagrange or d’Alembert –
Lagrange equations apply, this leads to a Noetherian conservation law. This is true both for systems
with holonomic constraints and for systems with non-holonomic constraints that are linear in the
velocities [1]. We will show in this paper how the integrals of the Routh sphere arise from Noether’s
invariance identity, and will derive expressions for the symmetry transformations associated with
these constants.

As a further demonstration of the power and utility of Noether’s theorem, we examine in
§ 5 the problem of the Chaplygin ball on a rotating turntable, recently studied in [2]. Using a
systematic approach, we deduce the four known integrals and their associated symmetries directly
from Noether’s invariance identity.

1. THE INVARIANCE IDENTITY FOR NONHOLONOMIC SYSTEMS

The analysis below follows closely the seminal paper [1]. Associated with invariance of the action
functional under transformations of the dependent and independent variables there is an identity,
the invariance identity. We restrict ourselves, at the expense of generality but for simplicity of
presentation, to the case when the transformation does not depend on the velocities. Then the
invariance identity may be expanded in powers of the velocity variables q̇μ, μ = 1, . . . , N , where N
is the number of degrees of freedom, to yield a set of differential equations. If these can be solved,
they provide the generators of a coordinate transformation that can be used to construct a constant
of the motion.

For a dynamical system with a Lagrangian function, let us define the action functional

S =

∫ t2

t1

L

(
q(t),

dq(t)

dt
, t

)
dt.

We consider a continuous transformation of the independent and dependent variables

t → T (q, t;α), qμ → Qμ(q, t;α),

where α ∈ R is a free parameter. The case α = 0 corresponds to the identity transformation, with
T (q, t; 0) = t and Qμ(q, t; 0) = qμ. We form the action S′ using the new variables but the same
functional form of the Lagrangian L:

S′ =

∫ T2

T1

L

(
Q(T ),

dQ(T )

dT
, T

)
dT,

where Qμ(T ) (with slight abuse of notation) stands for the new dependent variable as a function of
the new time. We consider the case where the action is invariant under the transformation: S′ = S.
For an infinitesimal perturbation, we write

qμ(t) −→ Qμ(T ) = qμ(t) + ε ξμ(q, t),

t −→ T = t + ε τ(q, t).

The coefficients of ε are called the generators of the transformation. They form the components of a
vector field (ξμ(q, t), τ(q, t)), called an infinitesimal Noetherian symmetry. We expand the integrand
of S′ and express it as an integral with respect to t. Then the following invariance identity results:

∂L

∂qμ
ξμ + pμξ̇

μ +
∂L

∂t
τ −Hτ̇ = 0, (1.1)
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where pμ = ∂L/∂q̇μ is the conjugate momentum, the Hamiltonian is H = pμq̇
μ − L, and the

Einstein summation convention is employed. This identity was first derived by Emmy Noether [16].
Equation (1.1) can be written in a completely equivalent but more illuminating form:

d

dt

[
pμξ

μ −Hτ

]
= (ξμ − q̇μτ)

[
d

dt

∂L

∂q̇μ
− ∂L

∂qμ

]
. (1.2)

Extremal or On-shell Motion

The term in square brackets on the right-hand side of Eq. (1.2) is the Euler – Lagrange operator
acting on the Lagrangian:

Eμ[L] ≡
d

dt

∂L

∂q̇μ
− ∂L

∂qμ
.

For a holonomic system, this expression vanishes, so the following conservation law holds:

d

dt

[
pμξ

μ −Hτ

]
= 0. (1.3)

For a general non-holonomic system, little can be said. However, if the M constraints are linear
in the velocities, so that

γκ ≡ Aκ
μ(q, t)q̇

μ +Bκ(q, t) = 0 , κ = 1, . . . ,M,

then the d’Alembert – Lagrange equations may be written in the form[
d

dt

∂L

∂q̇μ
− ∂L

∂qμ

]
= λκ

∂γκ

∂q̇μ
= λκA

κ
μ.

The right-hand side of Eq. (1.2) then becomes

(ξμ − q̇μτ)

[
d

dt

∂L

∂q̇μ
− ∂L

∂qμ

]
= (ξμ − q̇μτ)λκA

κ
μ = λκ(A

κ
μξ

μ +Bκτ).

If we assume that the infinitesimal Noetherian symmetry respects the constraints, namely, if

Aκ
μξ

μ +Bκτ = 0, κ = 1, . . . ,M, (1.4)

then this expression vanishes. As a consequence, the right-hand side of Eq. (1.2) vanishes for on-shell
flow.

We conclude that, for both holonomic systems and systems subject to non-holonomic constraints
that are linear in the velocities, even with inhomogeneous terms, Eq. (1.2) reduces to the
conservation law, Eq. (1.3).

2. ROUTH SPHERE

The dynamics of the Routh sphere are discussed in many texts on classical mechanics. The
original study is [17]. In this paper we follow the notation of [14] and [15]. There are six degrees of
freedom: the configuration of the body is given by (X,Y,Z), the coordinates of the centre of mass,
and the three Euler angles (θ, φ, ψ). The unit orthogonal triad in the space frame is {I,J,K} and
the unit orthogonal triad in the intermediate frame is {i, j,k} with i horizontal and k fixed along
the axis of the body (see Fig. 1).

The holonomic constraint that the geometric centre must remain at unit distance above the
underlying plane is used to eliminate the variable Z, leading to an effective system with N = 5
degrees of freedom. Assuming unit mass and unit radius, the Lagrangian of the Routh sphere is

L = 1
2

[
(I1 + a2s2)θ̇2 + (I1s

2 + I3c
2)φ̇2 + (2I3c)φ̇ψ̇ + (I3)ψ̇

2 + Ẋ2 + Ẏ 2
]
− ga(1 − c),

where s = sin θ, c = cos θ and other notation is conventional. We note that L is independent of

both φ and ψ. We assume that I1 = I2 �= I3.
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Fig. 1. Geometry and primary coordinates for the Routh sphere. Geometric centre C, mass centre O and
point of contact P. In this configuration, I and i point into the page and φ = −π/2.

There are M = 2 non-holonomic constraints, which are linear and homogeneous in the velocities,
corresponding to rolling motion without slipping:

Ẋ = hsφθ̇ − ascφφ̇− scφψ̇ (2.1)

Ẏ = −hcφθ̇ − assφφ̇− ssφψ̇, (2.2)

where cφ = cosφ, sφ = sinφ and h = 1− ac is the height of the centre of mass. We write these

constraints in the form γκ ≡ Aκ
μq̇

μ = 0 where q̇μ =
(
θ̇, φ̇, ψ̇, Ẋ, Ẏ

)
and

Aκ
μ =

⎡
⎣−hsφ ascφ scφ 1 0

hcφ assφ ssφ 0 1

⎤
⎦ .

For reference, we note that
Ẋ2 + Ẏ 2 = h2θ̇2 + s2(aφ̇+ ψ̇)2.

However, we cannot use this to eliminate Ẋ and Ẏ from the Lagrangian as the constraints are
non-holonomic [9].

The conjugate momenta are defined in terms of the Lagrangian: pμ = ∂L/∂q̇μ. For the Routh
sphere they are

pθ = (I1 + a2s2)θ̇,

pφ = (I1s
2 + I3c

2)φ̇+ (I3c)ψ̇,

pψ = (I3c)φ̇+ (I3)ψ̇.

We also have pX = Ẋ and pY = Ẏ . Since the determinant of the coefficients (the Hessian) is
(I1 + a2s2)I1I3s

2, we can solve for the velocities:

θ̇ = pθ/(I1 + a2s2),

φ̇ = (pφ − cpψ)/I1s
2,

ψ̇ = (−c/I1s
2)pφ +

(
(I1s

2 + I3c
2)/I1I3s

2
)
pψ

and, of course, Ẋ = pX and Ẏ = pY .

Invariance
We note that φ, ψ, X and Y are all ignorable coordinates. Thus, L is invariant with respect to

infinitesimal variations of these coordinates. For free-slip boundary conditions, where there are no
constraints linking the momenta, there are four conserved quantities{

pφ, pψ, pX , pY
}

corresponding to these four coordinates.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



NONHOLONOMIC NOETHERIAN SYMMETRIES 515

Since the Lagrangian does not depend explicitly on t, invariance under a transformation of the
form t′ = t+ ετ with τ constant leads, in the usual way, to conservation of the energy. We therefore
assume a transformation of the space coordinates,

φ′ = φ+ ε ξφ(θ),

ψ′ = ψ + ε ξψ(θ)

where the generators are functions of θ, so that

ξ̇φ =
dξφ

dθ
θ̇ and ξ̇ψ =

dξψ

dθ
θ̇.

The constraints also require variations of X and Y of the form

X ′ = X + ε ξX(θ, φ),

Y ′ = Y + ε ξY (θ, φ),

so that ξX and ξY depend on φ as well as θ. Explicitly, the constraints imply

ξX = −scφ(aξ
φ + ξψ) and ξY = −ssφ(aξ

φ + ξψ). (2.3)

We note that cφξ
X + sφξ

Y = −s(aξφ + ξψ), independent of φ. The time derivatives are

ξ̇X =
[
−c cφ(aξ

φ + ξψ)− scφ(aξ
φ
,θ + ξψ,θ)

]
θ̇ +

[
ssφ(aξ

φ + ξψ)
]
φ̇,

ξ̇Y =
[
−c sφ(aξ

φ + ξψ)− ssφ(aξ
φ
,θ + ξψ,θ)

]
θ̇ −

[
scφ(aξ

φ + ξψ)
]
φ̇.

Again, we note that cφξ̇
X + sφξ̇

Y is independent of φ. The invariance identity, Eq. (1.1), now
becomes

pφξ̇
φ + pψξ̇

ψ + pX ξ̇X + pY ξ̇
Y = 0.

Substituting the above values we get, for the unconstrained variables,

pφξ̇
φ + pψξ̇

ψ = [(I1s
2 + I3c

2)ξφ,θ + (I3c)ξ
ψ
,θ]θ̇φ̇+ [(I3c)ξ

φ
,θ + (I3)ξ

ψ
,θ]θ̇ψ̇

and, for the constrained variables,

pX ξ̇X + pY ξ̇
Y =

[
s(aξφ + ξψ) + as2(aξφ,θ + ξψ,θ)

]
θ̇φ̇+

[
sc(aξφ + ξψ) + s2(aξφ,θ + ξψ,θ)

]
θ̇ψ̇.

Note that this expression is independent of φ. Adding these two expressions and setting the

coefficients of θ̇φ̇ and θ̇ψ̇ separately to zero gives two ODEs for ξφ and ξψ:

(I1s
2 + I3c

2 + a2s2)
dξφ

dθ
+ (I3c+ as2)

dξψ

dθ
+ s(aξφ + ξψ) = 0, (2.4)

(I3c+ as2)
dξφ

dθ
+ (I3 + s2)

dξψ

dθ
+ sc(aξφ + ξψ) = 0. (2.5)

These are the symmetry equations for the Routh sphere. We can write them

F
dξ

dθ
= G ξ, (2.6)

where ξ = (ξφ, ξψ)T and the coefficient matrices are

F =

⎡
⎣I1s2 + I3c

2 + a2s2 I3c+ as2

I3c+ as2 I3 + s2

⎤
⎦ and G = −

⎡
⎣ as s

asc sc

⎤
⎦ .

The determinant of the matrix F is I1s
2/ρ2, where

ρ =
1√

s2 + I3 + (I3/I1)f2
.
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So F is invertible and the symmetry equations may be written as dξ/dθ = H ξ, where H = F−1G.
Explicitly,

d

dθ

⎛
⎝ξφ

ξψ

⎞
⎠ =

(
−ρ2s

I1

)⎡
⎣ a(I3 + h) (I3 + h)

a(I1c− I3c− ha) (I1c− I3c− ha)

⎤
⎦
⎛
⎝ξφ

ξψ

⎞
⎠ . (2.7)

Solution of the Symmetry Equations

One solution of Eqs. (2.4) and (2.5) is immediately obvious by inspection: take both ξφ and ξψ

constant, with ξφ = 1 and ξψ = −a. Then (aξφ + ξψ) = 0 so, by virtue of Eq. (2.3), both ξX and

ξY vanish. The Noetherian constant associated with this transformation is

CJ = pμξ
μ = pφ − apψ, (2.8)

which is Jellett’s constant.

Once a solution of Eqs. (2.7) is known, another one can be found. Suppose there are two linearly

independent solutions (ξφ1 , ξ
ψ
1 )

T and (ξφ2 , ξ
ψ
2 )

T. The Wronskian is defined to be the determinant

W (θ) =

∣∣∣∣∣∣
ξφ1 ξφ2

ξψ1 ξψ2

∣∣∣∣∣∣ = ξφ1 ξ
ψ
2 − ξφ2 ξ

ψ
1 .

It is easily shown that

dW

dθ
= Tr (H)W,

where Tr (H) = H11 + H22. This has a solution W (θ) = C exp[
∫
Tr (H) dθ]. The explicit form of H is

implied from Eq. (2.7) so that Tr (H) = (−ρ2s/I1)
[
I1c− I3(c− a)

]
. This can be integrated to yield

W (θ) = Cρ, with C a constant depending on the normalisation choice for the linearly independent
solutions. Then, using the definition of W , we find that

ξφ2 (θ) = ξφ1 (θ)

∫ θ H12(θ)

ξφ1 (θ)
2
W (θ) dθ.

In the present case, ξφ1 (θ) = 1, H12(θ) = (−ρ2s/I1)(I3 + h) and we make the convenient choice

W (θ) = I1ρ. We find, by direct integration, the solution ξφ2 (θ) = (c− a)ρ and thence, since W =

aξφ2 + ξψ2 , we get
⎛
⎝ξφ2

ξψ2

⎞
⎠ =

⎛
⎝ fρ

(I1 − af)ρ

⎞
⎠ ,

where we write f = c− a. Equation (2.3) gives ξX and ξY . Then the Noetherian constant is

CR = pμξ
μ =

[
I1
I3

]
pψ
ρ
, (2.9)

which is Routh’s constant.

We can now write the general solution of Eq. (2.7) as⎛
⎝ξφ

ξψ

⎞
⎠ = A1

⎛
⎝ξφ1

ξψ1

⎞
⎠+A2

⎛
⎝ξφ2

ξψ2

⎞
⎠ =

⎛
⎝ A1 +A2fρ

−aA1 +A2(I1 − af)ρ

⎞
⎠ .
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3. RECOVERING THE SYMMETRY FROM A KNOWN CONSTANT

Suppose we know that C = pμξ
μ is a constant of the motion. Then

∂pμ
∂pν

ξμ =

[
∂pφ
∂pν

ξφ +
∂pψ
∂pν

ξψ +
∂pX
∂pν

ξX +
∂pY
∂pν

ξY
]
=

∂C

∂pν
(3.1)

provides a system of equations for the generators ξμ. For unconstrained motion the momenta are
independent and it follows that ∂pμ/∂pν = δνμ, so that

ξν =
∂C

∂pν
.

For constrained motion, the generators are interconnected and a linear system of equations must
be solved.

We can write the constraint equations (2.1), (2.2) in terms of momenta:

pX = sφ

(
h

I1 + a2s2

)
pθ + cφ

[(
f

I1s

)
pφ −

(
fc

I1s
+

s

I3

)
pψ

]
,

pY = −cφ

(
h

I1 + a2s2

)
pθ + sφ

[(
f

I1s

)
pφ −

(
fc

I1s
+

s

I3

)
pψ

]
.

We also recall that the generators satisfy the constraint equation (2.3):

ξX = −scφ(aξ
φ + ξψ) and ξY = −ssφ(aξ

φ + ξψ).

These expressions allow us to eliminate the momenta pX and pY and the generators ξX and ξY

from Eq. (3.1) and obtain expressions relating ξφ and ξψ:

ξφ −
(
f

I1

)
(aξφ + ξψ) =

∂C

∂pφ
, (3.2)

ξψ +

(
fc

I1
+

s2

I3

)
(aξφ + ξψ) =

∂C

∂pψ
. (3.3)

Let us apply Eqs. (3.2), (3.3) to the Jellett and Routh constants. For the Jellett constant,
CJ = (pφ − apψ), we have (∂CJ/∂pφ, ∂CJ/∂pψ) = (1,−a) and the solution is immediately obvious
by inspection:

ΞJ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξθ

ξφ

ξψ

ξX

ξY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

−a

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.4)

The coordinates X and Y of the centre of mass do not vary. An interpretation of this vector will
be given in §4 below.

For the Routh constant, Eq. (2.9), we have ∂CR/∂pφ = 0 and ∂CR/∂pψ = I1/(I3ρ), and
Eqs. (3.2), (3.3) become

ξφ −
(
f

I1

)
(aξφ + ξψ) = 0,

ξψ +

(
fc

I1
+

s2

I3

)
(aξφ + ξψ) =

[
I1
I3

]
1

ρ
.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



518 BUSTAMANTE, LYNCH

Eliminating ξψ gives us an expression for ξφ:

1

f

[
I3 + s2 + (I3/I1)f

2
]
ξφ =

1

ρ
.

Simplifying this we get the infinitesimal Noetherian symmetry

ΞR ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξθ

ξφ

ξψ

ξX

ξY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

f

(I1 − af)

−I1scφ

−I1ssφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.5)

4. INTERPRETATION OF THE ROUTH SPHERE SYMMETRIES

Each infinitesimal Noetherian symmetry associated with a constant of the motion has a
geometrical interpretation obtained by integrating it to construct a finite transformation depending
on one free parameter. Let us call this free parameter α.

Jellett Symmetry

For the Jellett constant, the Noetherian symmetry (3.4) leads to the equations

dθ

dα
= 0,

dφ

dα
= 1,

dψ

dα
= −a,

dX

dα
= 0,

dY

dα
= 0.

This has the solution

θ = θ0, X = X0, Y = Y0 (constants),

φ(α) = α+ φ0, ψ(α) = −aα+ ψ0.

We consider the virtual motion corresponding to this free parameter α. The angular velocity is
simply

Ω =
dφ

dα
K+

dψ

dα
k = K− ak = −r,

where K is the unit vector in the vertical direction in the inertial frame, and k is the unit vector in
the body frame, pointing along the symmetry axis of the body. The contact vector r points from
the centre of mass O to the contact point P (see Fig. 1). It follows that Ω is the vector pointing
from the contact point P to the centre of mass O.

Since the position of the centre of mass is fixed, while the Euler angle φ changes at a constant
rate, we deduce that the angular velocity Ω precesses uniformly about the vertical axisK, describing
a cone. The period of this precession is Δα = 2π, the same as the period of the angle φ. The period
of the angle ψ is 2πa, which is almost never commensurate with 2π. Hence, the motion is generically
quasi-periodic.

Routh Symmetry

For the Routh constant, the Noetherian symmetry (3.5) leads to the equations

dθ

dα̃
= 0,

dφ

dα̃
= ρf,

dψ

dα̃
= ρ(I1 − af),

dX

dα̃
= −ρI1s cφ,

dY

dα̃
= −ρI1s sφ. (4.1)

Observing that, for θ constant, ρ is a positive constant, we will use the rescaled parameter ρα̃ as
our free parameter α from here on. We can solve the first three equations directly:

θ = θ0 (constant), φ(α) = fα+ φ0, ψ(α) = (I1 − af)α+ ψ0, (4.2)
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where f depends on θ and is thus constant. As in the case of the Jellett symmetry, the angles
φ and ψ change at constant rates, with ratio dψ/dφ = −a+ I1/f , again incommensurate in
general. As θ varies from 0 to π, this ratio may take arbitrary values outside the open interval
(−a− I1/(1 + a),−a+ I1/(1 − a)). In particular, as I1 > 0, it follows that dψ/dφ �= −a, which
shows that the Routh case does not contain the Jellett case.

Let us write the equations for X and Y , the last two equations of (4.1), explicitly, using the
partial solutions just found:

dX

dα
= −I1s cos(fα+ φ0),

dY

dα
= −I1s sin(fα+ φ0). (4.3)

The solution to these is immediate: letting (X0, Y0) be the value of (X,Y ) at α = 0, we have

X(α) = −I1s

f
[sin(fα+ φ0)− sin(φ0)] +X0, Y (α) =

I1s

f
[cos(fα+ φ0)− cos(φ0)] + Y0.

The interpretation of this solution is as follows:

• If f �= 0, then the projection of the centre of mass onto the underlying plane describes a
circle of radius R = I1s/|f |, centred at

(
X0 + (I1s/f) sinφ0, Y0 − (I1s/f) cosφ0

)
, with period

Δα = 2π/|f |. Noting that I1 and s are non-negative, the sense of rotation of this circular
motion is positive if f > 0 and negative if f < 0. An interesting case is when the parameters
I1, a and the angle θ are such that I1 − af = 0, which requires f > 0 in particular. Then the
ball does not spin with respect to its symmetry axis: ψ(α) = ψ0 for all α, and thus the motion
corresponds to the ball spinning in the positive sense with respect to the vertical axis K: the
vector k along the body’s symmetry axis precesses about the vertical K with period Δα.

• If f = 0, namely, if we choose θ = cos−1 a (which is always possible), then there is no circular
motion (the radius tends to infinity): the azimuthal angle φ is now constant while the ball
spins, and therefore the centre of mass moves on a straight line. The solution of (4.2) and (4.3)
in this case is

φ = φ0, ψ(α) = I1α+ ψ0 X(α) = −I1sα cos(φ0) +X0 Y (α) = −I1sα sin(φ0) + Y0,

so the centre of mass moves in a straight line as the Routh sphere rolls.

5. CHAPLYGIN BALL ON A ROTATING TURNTABLE

The dynamics of a Chaplygin ball on a rotating turntable were analysed in [2] and [18]. The
centre of mass of the ball coincides with the geometric centre and I1 = I2 �= I3. The holonomic
constraint confines the geometric centre to remain at unit distance above the underlying plane, so
that the vertical velocity of the centre of mass vanishes.

Assuming unit mass and unit radius for the Chaplygin ball, the Lagrangian is

L = 1
2

[
I1 θ̇

2 + (I1s
2 + I3c

2)φ̇2 + (2I3c)φ̇ψ̇ + (I3)ψ̇
2 + Ẋ2 + Ẏ 2

]
,

where s = sin θ, c = cos θ as above. The potential energy is constant and is taken to be zero. We

note that, as for the Routh sphere, L is independent of both φ and ψ.

There are two non-holonomic constraints, which are linear and homogeneous in the velocities,
corresponding to rolling motion without slipping with respect to the rotating turntable:

Ẋ = sφθ̇ − scφψ̇ − ΩY, (5.1)

Ẏ = −cφθ̇ − ssφψ̇ +ΩX, (5.2)

where cφ = cosφ and sφ = sinφ, as above, and Ω is the (constant) angular velocity of the rotating
turntable. We write these constraints in the form

γκ ≡ Aκ
μq̇

μ +Bκ
μq

μ = 0,
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where qμ = (θ, φ, ψ,X, Y ) and q̇μ =
(
θ̇, φ̇, ψ̇, Ẋ, Ẏ

)
. Thus,

Aκ
μ =

⎡
⎣−sφ 0 scφ 1 0

cφ 0 ssφ 0 1

⎤
⎦ and Bκ

μ =

⎡
⎣0 0 0 0 Ω

0 0 0 −Ω 0

⎤
⎦ .

We describe a systematic method to find Noetherian symmetries and corresponding constants
for the Chaplygin ball on a rotating turntable.

1) We require the symmetries to satisfy the non-holonomic constraints (5.1) and (5.2):

−sφξ
θ + scφξ

ψ + ξX +ΩY τ = 0, (5.3)

cφξ
θ + ssφξ

ψ + ξY − ΩXτ = 0. (5.4)

Note that the component ξφ is absent from these equations. The constraints are two linear
algebraic equations for the six symmetry components (ξθ, ξφ, ξψ, ξX , ξY , τ), which reduce the
number of independent symmetry components to four.

2) We make an ansatz for some symmetry components. For example, we might require ξφ to be
the only non-vanishing component.

3) In the invariance identity (1.1), we substitute the symmetry components that are known
from the ansatz. This yields a differential equation for the remaining symmetry components.

4) We solve the equation for these components. We can then construct the corresponding
conserved quantities, using the invariance identity in the form (1.2).

Symmetry for the Vertical Component of Angular Momentum

Noting that ξφ does not occur in the non-holonomic constraints (5.3) and (5.4), we seek a
symmetry

(ξθ, ξφ, ξψ, ξX , ξY , τ) = (0, ξφ, 0, 0, 0, 0).

This symmetry automatically satisfies the non-holonomic constraints. Now, because φ is an

ignorable coordinate, the invariance identity (1.1) becomes pφξ̇
φ = 0, with solution ξφ = constant.

Then the invariance identity in the form (1.2) becomes dpφ/dt = 0, so the φ-component of angular
momentum

LZ ≡ pφ (5.5)

is an integral of the motion.

Symmetries for Horizontal Components of Angular Momentum

Noting the unit coefficients of ξX and ξY in the constraints (5.3) and (5.4), we seek two types
of symmetry:

(ξθ, ξφ, ξψ, ξX , ξY , τ) = (ξθ, ξφ, ξψ, 1, 0, 0), (5.6)

(ξθ, ξφ, ξψ, ξX , ξY , τ) = (ξθ, ξφ, ξψ, 0, 1, 0). (5.7)

We consider these symmetries in turn. Substituting (5.6) into the constraints, we easily solve for

ξθ and ξψ:

ξθ = sφ, ξψ = −cφ/s. (5.8)

These immediately give us expressions for ξ̇θ and ξ̇ψ:

ξ̇θ = cφφ̇, ξ̇ψ = (ccφ/s
2)θ̇ + (sφ/s)φ̇.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



NONHOLONOMIC NOETHERIAN SYMMETRIES 521

Using these in the invariance identity (1.1), which is (∂L/∂θ)ξθ + pμξ̇
μ = 0, we obtain an equation

for ξ̇φ:

ξ̇φ = −
(cφ
s2

θ̇ +
csφ
s

φ̇
)
.

This implies that ξφ is a function of θ and φ only. We obtain

∂ξφ

∂θ
= −cφ

s2
,

∂ξφ

∂φ
= −csφ

s
.

These are easily seen to satisfy the compatibility condition ∂2ξφ/∂θ∂φ = ∂2ξφ/∂φ∂θ and we
immediately have the solution

ξφ =
ccφ
s

. (5.9)

The final step is to substitute (5.8) and (5.9) into the invariance identity (1.2) to obtain the
Noetherian integral

LY ≡ sφpθ +
(ccφ

s

)
pφ −

(cφ
s

)
pψ + pX . (5.10)

A similar analysis starting from symmetry (5.7) yields the Noetherian integral

LX ≡ cφpθ −
(csφ

s

)
pφ +

(sφ
s

)
pψ − pY . (5.11)

Symmetry for an Integral Involving the Energy

To obtain integrals which are non-linear in the velocities, we need to assume τ �= 0. We seek a
symmetry such that

(ξθ, ξφ, ξψ, ξX , ξY , τ) = (0, 0, 0, ξX , ξY , τ).

The constraints (5.3) and (5.4) then become

ξX +ΩY τ = 0, (5.12)

ξY − ΩX τ = 0. (5.13)

The invariance identity (1.1) is then

pX ξ̇X + pY ξ̇
Y −Hτ̇ = 0.

Differentiating the constraints (5.12) and (5.13) and substituting for ξ̇X and ξ̇Y , we get[
H − Ω(XẎ − ẊY )

]
τ̇ = 0.

This is satisfied for constant τ . Therefore, the invariance identity (1.2) gives us the integral

J ≡ H − ΩLO, (5.14)

where LO ≡ (XẎ − ẊY ) = K·(R× Ṙ) is the the angular momentum due to the motion of the
centre of mass about the origin of the space frame (R = XI+ Y J is the position vector of the
point of contact in the space frame).

Physical Interpretation of the Integrals

The angular momentum about the centre of mass is

LC ≡ ICω = I1ω1 + I2ω2 + I3ω3.

Following [2], we compute the angular momentum about the point of contact, which is, in our
notation,

LP = ICω +K× (ω ×K)− ΩR.
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We note that both the second and third terms on the right are horizontal vectors.
It was shown in [2] that, in the body frame,(

dLP

dt

)
B

= LP × ω. (5.15)

Therefore, in the space frame,(
dLP

dt

)
S

=

(
dLP

dt

)
B

+ ω × LP = 0.

It therefore follows that F1 = I · LP, F2 = J · LP and F3 = K · LP are integrals of the motion.
Computation of F3 is simple, since only the first term of (5.15) contributes:K ·LP = pφ. Expressions
for the remaining integrals can be computed:

I · LP = cφpθ −
(csφ

s

)
pφ +

(sφ
s

)
pψ − pY ,

J · LP = sφpθ +
(ccφ

s

)
pφ −

(cφ
s

)
pψ + pX .

We see that the three components of LP in the space frame are precisely the three integrals
(LX , LY , LZ) that we have derived from Noether’s theorem.

In [2], another integral, similar to the Jacobi integral, was found:

E = 1
2ω·

[
ICω +K×(ω×K)

]
− 1

2Ω
2(X2 + Y 2).

They cite the origin of this integral as [8]. It is straightforward to show that E is identical to the
integral J in (5.14), which we found using Noether’s theorem.

Interpretation of the Symmetries

We proceed as in Section 4 to find finite versions of the four infinitesimal symmetries just found.
• Symmetry for LZ . In terms of the free parameter α of the symmetry, we get the equation

dφ

dα
= 1,

with solution φ(α) = α. The remaining coordinates (θ, ψ,X, Y ) are kept constant. This corresponds
geometrically to the spinning of the ball about the point of contact, at a constant angular velocity
dφ/dα = 1.
• Symmetry for LY . Reading off the coefficients of pμ from equation (5.10), we get the equations

dθ

dα
= sinφ ,

dφ

dα
=

cos θ cosφ

sin θ
,

dψ

dα
= −cosφ

sin θ
,

dX

dα
= 1,

dY

dα
= 0.

One immediately gets X(α) = α and Y = constant. This suggests that the geometric interpretation
of this symmetry corresponds to a rotation of the ball such that Y is constant and X changes
linearly. To see this, consider the equations for θ and φ. They provide the first integral

sin θ cosφ = y0 (constant),

which validates this interpretation. A less obvious result follows from the equation for ψ, which can
be solved by quadrature, giving the implicit first integral

tan(ψ − ψ0) = cos θ cotφ (ψ0 = constant).

• Symmetry for LX . Reading off the coefficients of pμ from Eq. (5.11), we get the equations

dθ

dα
= cosφ,

dφ

dα
= −cos θ sinφ

sin θ
,

dψ

dα
=

sinφ

sin θ
,

dX

dα
= 0,

dY

dα
= −1.

Here the interpretation of the symmetry corresponds to a rotation of the ball such that X is
constant and Y changes linearly. In a similar fashion to the results obtained for LY , we obtain the
following first integrals:

sin θ sinφ = x0 (constant), tan(ψ − ψ0) = − cos θ tan φ (ψ0 = constant).
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6. DISCUSSION

The key property of the infinitesimal Noetherian symmetries found for the Routh sphere and the
Chaplygin ball is that they satisfy the non-holonomic constraints. In the more general case of the
Chaplygin top or the Rock’n’roller, it is not known whether an infinitesimal Noetherian symmetry
that satisfies the non-holonomic constraints exists.

If such a symmetry existed, then a constant of motion could be constructed via Eq. (1.3). For
example, it is possible to show for these more general cases that the transformation

φ → φ+ ε

(while keeping all other variables unchanged, including X and Y ) is an infinitesimal Noetherian
symmetry. However, this symmetry does not satisfy the non-holonomic constraints (2.1), (2.2) (with
velocities replaced by the generators). In fact, from Eq. (1.2) we obtain

dpφ
dt

= as(λ1cφ + λ2sφ),

where λ1 and λ2 are the multipliers associated with the constraints (2.1) and (2.2), respectively.
This example shows that a Noetherian symmetry is potentially useful even if it does not satisfy the
non-holonomic constraints: it provides direct formulas for the total time derivative of quantities,
which in principle could be exploited for applications such as finding Lyapunov functions.

Another avenue of research is the understanding of the Lie algebra between the Noetherian
symmetries that we found for non-holonomic systems. In the case of holonomic systems, it is well
known that the Lie bracket between two symmetries is another symmetry. This leads to a method
for finding new integrals starting from known ones [5]. However, when non-holonomic constraints
are imposed, the usual Lie bracket between two Noetherian symmetries does not necessarily produce
another Noetherian symmetry. Further research on the relation between Poisson brackets and
symmetries (see [3, 7] for studies in the context of the Routh sphere) is needed to generalise
the Lie bracket as a method to produce new Noetherian symmetries.
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