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Met Éireann, Glasnevin Hill, Dublin 9, Ireland

February 25, 2002

Abstract

The value of general Hamiltonian methods in geophysical fluid dynamics has become clear over recent
years. This paper provides an introduction to some of the key ideas necessary for fruitful application
of these methods to problems in atmosphere and ocean dynamics. Hamiltonian dynamics is reviewed
in the context of simple particle dynamics. The non-canonical formalism which is required for fluid
dynamics is introduced first in the finite-dimensional case. The Lagrangian and Eulerian formulations
of the fluid dynamical equations are then considered, and the method of reduction from Lagrangian
to Eulerian form is described. Rotational effects are introduced in the context of the shallow water
equations, and these equations are expressed in Hamiltonian form in both Lagrangian and Eulerian
variables. Finally, simple balanced systems are derived, in which constraints are imposed on the fluid
motion by applying least action principles to Lagrangians modified either by additional terms with
Lagrange multipliers or by direct approximation.
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1 Introduction

The application of general Hamiltonian methods to fluid dynamics has been an area of increasing
interest over the past few decades. A number of reviews have appeared, and this paper has bor-
rowed heavily from several of them. We refer in particular to review papers by Salmon (1988a),
Shepherd (1990) and Morrison (1998), and to the recent textbook of Salmon (1998). The under-
lying theory has considerable æsthetic appeal and the methods of generalized analytical dynamics
are powerful. A specific example is Noether’s Theorem, which provides a connection between
continuous symmetries of the Hamiltonian function and conservation laws of the system.

We will examine the application of Hamiltonian theory in its generalized formulation to prob-
lems in geophysical fluid dynamics. The canonical form which is applicable to many finite-
dimensional systems is not the appropriate framework; indeed, it was the undue emphasis on
the canonical equations which hampered progress in Hamiltonian fluid dynamics for so long. A
more general formulation is required; this is presented in§2 below. It consists of identifying
appropriate generalized coordinatesz, a Hamiltonian functionH(z) and a symplectic operatorJ
having special algebraic properties. Some of the new ideas are illustrated through the example of
the swinging spring, a simple mechanical system with interesting properties (Lynch, 2002a).

There are several advantages associated with the general Hamiltonian formulation. First,
Hamiltonian methods are not tied to a particular coordinate system. The freedom to choose coor-
dinates can result in significant simplifications of the equations. Second, due to the relationship
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between symmetries and conservation laws, approximations which conserve symmetries of the
Hamiltonian also retain analogues of the conservation laws of the exact system. Thus, various
balance systems may be derived, which have energetics consistent with the systems from which
they are derived. Thirdly, the general Hamiltonian framework can be a powerful starting point for
perturbation analysis. Approximations may be introduced directly into the system Hamiltonian
or Lagrangian functionbeforethe least action principle is used to obtain approximate equations.
The average Lagrangian technique is frequently easier to apply than alternative perturbation tech-
niques.

2 Finite Dimensional Mechanical Systems

2.1 The Canonical Equations

The state of a mechanical system withN degrees of freedom, comprising a finite collection
of discrete particles, can be specified by the generalized coordinates{qn, n = 1, 2, . . . , N} as
functions of the timet. The dynamics of the system are determined by the LagrangianL = T−V ,
the difference between the kinetic and potential energies. The LagrangianL = L(qn, q̇n, t) is a
function of the coordinatesqn, the velocitiesq̇n and possibly the timet. The evolution of the
system may be determined from Hamilton’s principle

δ

∫ t0

0

L dt = 0 (1)

where the variationδ is the change in the action
∫

Ldt resulting from variationsδqn which vanish
at the initial and final timest = 0 andt = t0. The solution of this variational problem yields the
Euler-Lagrange equations

d

dt

∂L

∂q̇n

− ∂L

∂qn

= 0 . (2)

Note that the dynamics is unaffected by scaling ofL or addition of an arbitrary constant to it:
L → αL + β with α andβ constant does not result in any change to (2).

EXAMPLE 1: THE SWINGING SPRING I. The Lagrangian of a spherical elastic pendulum orswinging springmay
be written

L = 1
2m(ẋ2 + ẏ2 + Ż2)− 1

2k(r − `0)2 −mgz

wherem is the mass of the bob,k the stiffness of the spring andg the acceleration due to gravity. The first right-hand
term is the kinetic energy, the second is the elastic potential energy and the third is the gravitational potential energy.
The coordinates are(q1, q2, q3) = (x, y, Z), cartesian coordinates centered at the point of suspension of the spring,
andr =

√
x2 + y2 + Z2. The equations of motion may be written immediately using (2):

ẍ+
k

m

(
r − `0
r

)
x = 0 , ÿ +

k

m

(
r − `0
r

)
y = 0 , z̈ +

k

m

(
r − `0
r

)
z + g = 0 .

The momentump = (mẋ,mẏ,mż) is obtained from derivatives of the Lagrangian with respect to the velocities.
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The generalized momentum is defined as

pn =
∂L(q, q̇)

∂q̇n

. (3)

In typical conditions (for a non-singular Lagrangian) these equations may be inverted to obtain
q̇n as functions ofpn andqn. We assume that this is the case. The Hamiltonian is defined by
means of the Legendre transformation

H(q, p) =
∑

pnq̇n − L(q, q̇) . (4)

We assume that (3) has been solved forq̇ so thatH is a function of the canonical variablesp and
q. Hamilton’s principle requires that the action

δ

∫ t0

0

{∑
pnq̇n −H(q, p)

}
dt

is stationary for independent variationsδqn andδpn with δqn vanishing at the end-times. This
results in Hamilton’scanonical equations:

dqn

dt
=

∂H

∂pn

,
dpn

dt
= −∂H

∂qn

. (5)

EXAMPLE 2: THE SWINGING SPRING II. For the swinging spring, the Lagrangian of Example 1, approximated to
cubic order in the amplitudes, is

L = 1
2

(
ẋ2 + ẏ2 + ż2

)
− 1

2

(
ω2

R(x2 + y2) + ω2
Zz

2
)

+ 1
2λ(x2 + y2)z , (6)

wherex, y andz are Cartesian coordinates centered at the point of equilibrium,ωR =
√
g/`, ωZ =

√
k/m and

λ = `0ω
2
Z/`

2. For simplicity we assumem = 1. The generalized momenta are(px, py, pz) = (ẋ, ẏ, ż), and the
Legendre transformation (4) yields the Hamiltonian

H = 1
2 (p2

x + p2
y + p2

z) + 1
2

(
ω2

R(x2 + y2) + ω2
Zz

2
)
− 1

2λ(x2 + y2)z ,

Then the canonical Hamiltonian equations are

ẋ = px , ṗx = −ω2
Rx+ λxz ,

ẏ = py , ṗy = −ω2
Ry + λyz , (7)

ż = pz , ṗz = −ω2
Zz + 1

2λ(x2 + y2) .

The caseωZ = 2ωR is of special interest. In thisresonantcase, there is strong interchange of energy between the
swinging and springing motions (Lynch, 2002a,b). We consider the resonant case below.
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2.2 The Symplectic Form

If we define a vectorz = zi = {q1, q2, . . . , qN , p1, p2, . . . , pN}, the full system (5) can be written
in vectorial form

ż = J∇zH .

or in tensorial form as

żi = J ij ∂H

∂zj
, (8)

where the matrixJ = J ij, called thesymplectic operator,1 is defined by

J = J ij =

(
O I
−I O

)
. (9)

The summation convention applies in (8) and below, where repeated indices are summed over
their ranges, unless otherwise indicated.

It is straightforward to show thatJ ij transforms as a second order contravariant tensor which
is skew-symmetric

J ji = −J ij

and satisfies the Jacobi identity

J im ∂J jk

∂zm
+ J jm ∂Jki

∂zm
+ Jkm ∂J ij

∂zm
= 0 .

If J is non-singular then, according to Darboux’s Theorem (see, e.g., José and Saletan, 1998), it is
possible to transform to coordinates for whichJ assumes the canonical form (9). IfJ is singular
the system is callednon-canonical. In general,J is a function of the coordinatesz. A system is
Hamiltonian if we can specify a functionH and an operatorJ , singular or otherwise, which is
skew-symmetric and satisfies the Jacobi identity, and such that the evolution is governed by (8).
The advantage of the formulation (8) is that it enables us to consider non-canonical dynamical
systems. It is in this general form that the methods may be applied to continuous systems such as
fluids.

2.3 Poisson Brackets

The Poisson bracket of two functions of state is a bilinear operator defined as

{F, G} =
∂F

∂qn

∂G

∂pn

− ∂F

∂pn

∂G

∂qn

In terms ofzi andJ ij it may be written

{F, G} =
∂F

∂zi
J ij ∂G

∂zj
(10)

1The termsymplectic, from the Greek for ‘intertwined’, was introduced in 1939 by Hermann Weyl in his bookThe Classical
Groups(Goldstein,et al., 2002).
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and this form provides the definition valid for generalJ . Following from the properties of the
symplectic operatorJ ij, the Poisson brackets are also skew-symmetric

{F, G} = −{G, F}

and satisfy the Jacobi identity

{E, {F, G}}+ {F, {G, E}}+ {G, {E, F}} = 0

for all state functionsE, F andG. The canonical equations may now be written in the form

q̇n = {qn, H} , ṗn = {pn, H} ,

or, in terms of the variablezi = {q1, q2, . . . , qN , p1, p2, . . . , pN},

żi = {zi, H} .

The time evolution of a general state functionF (z) = F (q, p) is given by

dF

dt
= {F, H} . (11)

This is the evolution equation for a general Hamiltonian system.
A general Hamiltonian system consists of a phase-space and two geometric objects, a scalar

H and a Poisson bracket{ , } which is a skew-symmetric bilinear operator satisfying the Jacobi
identity.

EXAMPLE 3: THE SWINGING SPRING III. We apply the average Lagrangian technique to the swinging spring (see
Holm and Lynch, 2002, for details). The solution is assumed to be of the form

x = <[a(t) exp(iωRt)] , y = <[b(t) exp(iωRt)] , z = <[c(t) exp(2iωRt)] .

The coefficientsa(t), b(t) andc(t) are assumed to vary on a time scale which is much longer than the time-scale
of the oscillations. If the Lagrangian (6) is now averaged over the fast time, the Euler-Lagrange equations for the
modulation amplitudes are

iȧ = κa∗c , iḃ = κb∗c , iċ = 1
4κ(a

2 + b2)

whereκ = λ/(4ωR). If we now introduce new dependent variablesA1,A2 andA3 defined by

A1 = 1
2κ(a+ ib) , A2 = 1

2κ(a− ib) , A3 = iκc ,

the modulation equations take the following form

Ȧ1 = −A∗
2A3 ,

Ȧ2 = −A3A
∗
1 , (12)

Ȧ3 = +A1A2 .

These are thethree-wave equations.
The three-wave equations conserve the following three quantities,

H = (A1A2A
∗
3 −A∗

1A
∗
2A3) ,

N = |A1|2 + |A2|2 + 2|A3|2 ,
M = |A1|2 − |A2|2 .
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The first,H = 2i={A1A2A
∗
3}, is the Hamiltonian of the system (see Holm & Lynch, 2002). The second,N , is a

measure of the energy of the oscillations and the third,M , is the angular momentum.
Definingz = (A1, A2, A3, A

∗
1, A

∗
2, A

∗
3), the system (12) together with its complex conjugate can be written in

canonical form (8) withJ given by (9). Alternatively, if we writeAn = AnR+iAnI and definep = (A1R, A2R, A3R)
andq = (A1I, A2I, A3I), then (12) are in the canonical form (5).

2.4 Noether’s Theorem

There is an intimate relationship between symmetry and invariance of dynamical systems. This
was first elucidated by Emmy Noether (1882–1935). Symmetry is a geometric property in which
quantities remain unchanged under coordinate transformation. Invariance is an algebraic or an-
alytical property whereby ‘integrals of the motion’ are constant along system trajectories. We
consider a continuous family of coordinate transformationsqn(t) → qn(α, t) parameterized by a
single quantityα, such thatqn(t) = qn(0, t). For example, consider a translation along a single
direction,qk(α) = qk + α (for notational simplicity, we will drop the explicit dependence ont).
We assume that the Lagrangian is not altered by the transformation,L[qn(α), q̇n(α)] = L[qn, q̇n],
which implies a symmetry of the system. Thus,

d

dα
L[qn(α), q̇n(α)] =

∂L

∂qn(α)

∂qn(α)

∂α
+

∂L

∂q̇n(α)

∂q̇n(α)

∂α
= 0 .

Sinceqn(α) is a solution of Lagrange’s equations for anyα, we also have

d

dt

∂L

∂q̇n(α)
− ∂L

∂qn(α)
= 0 .

Combining these two equations gives

d

dt

(
∂L

∂q̇n(α)

)
∂qn(α)

∂α
+

∂L

∂q̇n(α)

d

dt

(
∂qn(α)

∂α

)
=

d

dt

[
∂L

∂q̇n(α)

∂qn(α)

∂α

]
= 0 .

In particular, this holds forα = 0. Thus, the quantity

N ≡ ∂L

∂q̇n

∂qn

∂α
= pn

∂qn

∂α
(13)

is an invariant of the motion. Thus, the symmetry property implies a conservation law. The
reverse also holds: every conserved quantity is associated with a symmetry of the dynamical
system.

EXAMPLE 4: THE SWINGING SPRING IV. We first illustrate Noether’s Theorem in two simple cases: invariance
under translation and invariance under rotation. Suppose the Lagrangian is

L = 1
2 (ẋ2 + ẏ2 + ż2)− V (z)

where the potential energy is independent ofx andy. The Lagrangian is invariant under the horizontal translation
x→ x+α. The quantityN in (13) is just thex-momentumpx = mẋ. Clearly, they-momentumpy = mẏ is also a
constant of the motion. Thus, translational invariance corresponds to conservation of linear momentum.
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Consider now invariance under a rotation:

x(α) = +x cosα+ y sinα
y(α) = −x sinα+ y cosα
z(α) = z .

If the Lagrangian is assumed to be unchanged under this transformation, (13) yields the following conserved quan-
tity:

N = m(yẋ− xẏ) .

This is, of course, the angular momentum about the vertical. Thus, rotational invariance is associated with conser-
vation of angular momentum.

Now recall from Example 3 that the Hamiltonian for envelope amplitudes of the swinging spring is given by
H = 2i={A1A2A

∗
3} = (ABC∗ − A∗B∗C), where(A1, A2, A3) = (A,B,C) and we takep = (A,B,C) and

q = (A∗, B∗, C∗) as canonically conjugate coordinates. The Hamiltonian is unchanged under the following trans-
formations:

1. The phases ofA andC are changed by equal amounts;

2. The phases ofB andC are changed by equal amounts;

3. The phases ofA andB are changed by opposite amounts.

By means of the Legendre transformation, it is clear that the Lagrangian has similar properties of symmetry. Consider
the first case, and letA → A exp(iα) andC → C exp(iα). Using (13), we find that the following quantity is
conserved:

N = pn
∂qn
∂α

∣∣∣
α=0

= A(−iA∗) + C(−iC∗) = −i(|A|2 + |C|2) .

Thus,N1 ≡ |A|2 + |C|2 is a constant of motion. Similarly,N2 ≡ |B|2 + |C|2 is invariant (N1 andN2 are called the
Manley-Rowe quantities). The sum or these isN = |A|2 + |B|2 + 2|C|2, which we already noted as an invariant in
Example 3 above. The third symmetry yields constancy of the angular momentum quantity,M = |A|2 − |B|2. We
thus see how constants of the motion may be found by scrutiny of the Hamiltonian, without explicit consideration of
the equations of motion.

2.5 Casimirs

If the reduction of a Hamiltonian system results in a non-canonical formulation, there are con-
stants of the motion associated with the singular nature of the symplectic operator. In the reduced
phase-space, canonical coordinates do not exist. There are conserved quantities corresponding
to symmetries of the original system which no longer appear explicitly in the reduced Hamilto-
nian. These appear as additional constants of motion calledCasimirs.2 The reduced Hamiltonian
is determined only up to addition of these Casimir functions. The Casimirs of the problem are
those functions ofz which Poisson-commute with all other state functions or, equivalently, whose
z-derivatives are in the kernel ofJ :

{F, C} = 0 , ∀F = F (z) or J ij ∂C

∂zj
= 0 .

2According to Marsden and Ratiu (1999), H. B. G. Casimir, a student of Paul Ehrenfest, wrote a brilliant thesis on the quantum
mechanics of the rigid body (Casimir, 1931)
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They arise due to the singularity of the symplectic operatorJ because, ifJ is invertible, its kernel
is trivial. For canonical systems there are no non-constant Casimirs. The number of independent
Casimirs is the co-rank of the operatorJ . Through Noether’s Theorem, continuous symmetries
of the Hamiltonian are associated with invariants of the motion. Casimirs are also constants of
the motion, sincedC/dt = {C, H} = 0, but they are determined by the degenerate structure of
J , not by the HamiltonianH. The dynamics are not altered by addition of an arbitrary linear
combination of the Casimir functions to the Hamiltonian.

EXAMPLE 5: THE SWINGING SPRING V. For the special case where the Hamiltonian takes the value zero, the
system (12) reduces to threereal equations forX = |A1|, Y = |A2| andZ = |A3|:

Ẋ = −Y Z , Ẏ = −ZX , Ż = +XY . (14)

If we define the coordinates aszi = (X,Y, Z)T and the Hamiltonian to beH = 1
2 (X2 + Y 2 + 2Z2), this system

can be written as a non-canonical Hamiltonian system

żi = J ij ∂H

∂zj

where the symplectic matrix takes the (non-unique) form

J = J ij =

 0 −2kZ −( 1
2 − k)Y

2kZ 0 −( 1
2 + k)X

( 1
2 − k)Y ( 1

2 + k)X 0

 .

Herek is arbitrary;J takes its simplest forms fork ∈
{
− 1

2 , 0,+
1
2

}
. We note that|J | = 0, so the system is

non-invertible. In any case, the system is obviously non-canonical, since the order ofz is odd. It is straightforward
to show thatJ satisfies the Jacobi identity

εijkJ
im ∂Jjk

∂zm
= 0 .

We defineC(k) = 2kH + M whereM = X2 − Y 2 is the angular momentum of the spring. Clearly

∂C(k)/∂zj = 4
(
(k + 1

2 )X, (k − 1
2 )Y, 2kZ

)T
and so

J ij ∂C(k)
∂zj

= 0 .

Thus,C(k) is a Casimir of the system. Sincek is arbitrary, we may choosek = 0. ThenM = C(0) is a Casimir.
Obviously, so is any functionf(M). The dynamics are unaffected by addition off(M) to the Hamiltonian. Thus,
for example, we may consider

H ′ = H + 1
2M = X2 + Z2 ,

to be the Hamiltonian. This is simpler than the original form, sinceY no longer appears in it.
Equations (14) are equivalent to Euler’s equations for the rotation of a free rigid body rotating about its center

of gravity (see Lynch, 2002c for discussion). For a generalized Hamiltonian formulation of Euler’s equations, see
Shepherd, 1990.

3 Continuous Fluid Systems

3.1 Lagrangian and Eulerian Descriptions

In the Lagrangian description, each fluid particle is assigned a labela = (a, b, c). For example,
the labels may be defined in terms of the positions of the particles at the initial time. The label
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of an individual particle is fixed for all time and travels with the flow. The independent variables
are(a, b, c, τ), where we denote time byτ so that∂/∂τ means that(a, b, c) are held fixed. The
dependent variables are the position coordinates

x(a, b, c, τ) , y(a, b, c, τ) , z(a, b, c, τ) (15)

of the particles as functions of their labels and the time. We assume this transformation is invert-
ible at every time so that(a, b, c) can be obtained in terms of(x, y, z).

The derivatives ina-space andx-space are related by the chain rule

∂F

∂τ
=

∂F

∂t

∂t

∂τ
+

∂F

∂x

∂x

∂τ
+

∂F

∂y

∂y

∂τ
+

∂F

∂z

∂z

∂τ
(16)

(∂/∂t means that(x, y, z) are held constant). But the velocity of a particle is given by the sub-
stantive derivative

v = (u, v, w) =

(
∂x

∂τ
,
∂y

∂τ
,
∂z

∂τ

)
so (16) can be written

∂F

∂τ
=

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
=

∂F

∂t
+ v · ∇xF

which is the usual expression for the Lagrangian time derivative, normally writtendF/dt, fol-
lowing the flow.

It is convenient to assign the particle labels in such a way that

dm = da db dc = dVa ,

wheredm is the mass of an infinitesimal volumedVa in a-space. But

dm = ρ dx dy dz = ρ dVx

wheredVx is the volume inx-space. The volume expressions are relatated by the Jacobian of the
transformation (15) so we have

ρ =
∂(a, b, c)

∂(x, y, z)
≡ ∂a

∂x
.

The specific volume is the inverse of the density,

α =
∂(x, y, z)

∂(a, b, c)
≡ ∂x

∂a
.

and the substantive derivative of this leads to
∂α

∂τ
= α

[
∂u

∂x
+

∂v

∂y
+

∂w

∂z

]
(see Salmon, 1998, p. 6). We can rewrite this in a more familiar form

dρ

dt
+ ρ∇ · v = 0 ,

so the usual continuity equation results from the assumption that fixeda-space volumes have
fixed mass.
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3.2 Transition from Discrete to Continuous

The momentum equation will be derived from Hamilton’s principle (following Salmon, 1998).
We will deduce the Lagrangian formulation for fluid flow by transition from a discrete to a con-
tinuous system. The Lagrangian for a system ofN discrete particles can be written

L(xn, ẋn) =
N∑

n=1

1
2
mn

dxn

dt
·dxn

dt
− V (x) (17)

whereV (x) is the potential function. Hamilton’s principle states that the variation

δ

∫ t2

t1

L(xn, ẋn) dt

should be zero for arbitrary variationsδxn that vanish at the end times. This leads to Newton’s
law

d

dt
(mnẋn) = − ∂V

∂xn

.

By allowingN to increase without limit and the distances between particles to become arbitrarily
small, we can represent a continuous fluid by a Lagrangian density of the form (17) where now
x and ẋ correspond to the positions and velocities of labeled fluid particles and the indicesn
represent the particle labels. We replace

∑
mn by

∫
dadbdc. The kinetic energy becomes

T =

∫∫∫ {
1
2

∂x

∂τ
·∂x

∂τ

}
dadbdc

The potential energy comprises the internal energyE = E(α, S) which is a function of spe-
cific volumeα and specific entropyS, and the energy due to external forces such as gravity,
represented by a potential functionΦ(x) which is a function of position. Thus

V =

∫∫∫
{E(α, S) + Φ(x)} dadbdc .

Then Hamilton’s principle requires that the action∫ t2

t1

dt

{∫∫∫ [
1
2

∂x

∂τ
·∂x

∂τ
− E

(
∂x

∂a
, S

)
− Φ(x)

]
dadbdc

}
(18)

be stationary for arbitrary variationsδx(a, b, c) in the locations of the fluid particles.

3.3 The Lagrangian Momentum Equation

The variationsδx must have no normal components at rigid boundaries and must vanish at the
end times. For adiabatic motion, the entropyS depends only ona and not onτ . A straightforward
calculation then yields the momentum equation

∂2x

∂τ 2
= −α∇p−∇Φ
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wherep = −∂E/∂α = ρ2∂E/∂ρ is the pressure (which must vanish at free boundaries). Noting
thatv = ∂x/∂τ is the fluid velocity, we can write the momentum equation in a more familiar
form:

dv

dt
+

1

ρ
∇p +∇Φ = 0 .

The Lagrangian density (the integrand of (18)) does not depend explicitly on the timeτ . This
symmetry is associated, through Noether’s theorem, with energy conservation

d

dt

∫∫∫ {
1
2

∂x

∂τ
·∂x

∂τ
+ E + Φ

}
dadbdc = 0 .

There is another, less obvious, symmetry property of (18), corresponding to particle relabeling
which leaves the density and entropy unchanged. The conservation principle associated with this
particle relabeling symmetry is that of potential vorticity

d

dt

[
∇× v · ∇S

ρ

]
= 0 .

The particle relabeling symmetry is responsible for the existence of a closed Eulerian formulation
of fluid mechanics.

3.4 Functional Derivatives

In discrete mechanical systems the dependent variableszn are functions of the timeτ . A function
of state is any functionF (zn) whose value is determined once the variableszn are specified. Its
variation withzn is given in terms of the partial derivatives:

δF =
∂F

∂zn
δzn .

In fluid dynamics, the dependent variables are functions of space as well as time,zn = zn(x, τ).
We assume that they belong to some function spaceZ. We assume also that a real inner product
is defined on this space. Typically, it is a spatial integral over the domain:

〈F, G〉 =

∫∫∫
F (z)G(z) da .

Instead of functions of state we havefunctionalsof state, that is functions of functions, mapping
Z to the real line. We will denote functionals by script letters. In place of partial derivatives we
must now considerfunctional derivativesδF/δzn which are defined by

d

dε
F [zn + εw]

∣∣∣∣
ε=0

=

〈
δF

δzn
, w

〉
, (19)

for arbitrary functionsw ∈ Z. Writing δzn = εw this implies

δF ≡ F [zn + δzn]−F [zn] =

∫∫∫
δF

δzn
δznda + O((δzn)2) . (20)
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The variationsδzn are assumed to vanish at the domain boundaries. The functional derivative
δF/δzn is itself a function in the spaceZ. To evaluate the functional derivatives ofF , we
calculate the variationδF arising from arbitrary variationsδzn, and express it in the form (20).

EXAMPLE 6: FUNCTIONAL DERIVATIVES. To clarify the definition of functional derivatives, we consider three
examples. First, letu(x) be a function on the unit interval[0, 1] and let

F [u] =
∫ 1

0

F [x, u(x), ux(x)] dx .

Then, applying a variationδu with δu(0) = δu(1) = 0, we have

δF =
∫ 1

0

[
∂F

∂u
δu+

∂F

∂ux
δux

]
dx =

∫ 1

0

[(
∂F

∂u
− d

dx

∂F

∂ux

)
δu

]
dx

where the last expression arises through integration by parts. Thus,

δF

δu
=
∂F

∂u
− d

dx

∂F

∂ux
.

As a second example, letF [u] = u(x0) be the functional which evaluatesu at x0. We write it in the form
F [u] =

∫
δ(x− x0)u(x)dx. Thus we have

δF [u] =
∫
δ(x− x0)δu(x) dx = 〈δ(x− x0), δu〉

which immediately implies
δF

δu
= δ(x− x0) .

For a final example, let us suppose that the energy of a fluid system can be expressed as

E =
∫∫∫ [

1
2 ẋ · ẋ + V (x)

]
da .

Sinceda has dimensions of mass,E has dimensionsML2T−2 of energy, as expected. Ifx andẋ are varied, we have

δE =
∫∫∫ [

ẋ · δẋ +
∂V

∂x
·δx

]
da ,

so the variational derivatives are given by

δE

δẋ
= ẋ ,

δE

δx
=
∂V

∂x
.

Note the dimensions:δE /δẋ[=]LT−1. However,δE [=]ML2T−2 andδẋ[=]LT−1, so the ratio of these dimensions
is MLT−1. Thus, the functional derivative doesnot have the dimensions which its symbolic form would suggest.3

3This is a serious defect of the notation. However, the convention is now firmly established.
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3.5 The Canonical Equations for a Fluid

Let us suppose that the Lagrangian is given in the form

L =

∫∫∫
L(x, ẋ) da .

Then the variation ofx andẋ leads to

δL =

∫∫∫ [
∂L

∂x
·δx +

∂L

∂ẋ
·δẋ

]
da

or, in terms of variational derivatives,

δL =

∫∫∫ [
δL

δx
·δx +

δL

δẋ
·δẋ

]
da .

Now Hamilton’s principle requires that the actionS =
∫

L dt be stationary:

δS = δ

∫
L dt =

∫ {∫∫∫ [
δL

δx
·δx +

δL

δẋ
·δẋ

]
da

}
dt = 0

Integrating by parts and assumingδx vanishes at the end times, we get the Lagrangian equations
for a fluid

d

dt

δL

δẋ
− δL

δx
= 0 .

The generalized momentump corresponding to (3) is

p ≡ u =
δL

δẋ
. (21)

By analogy with (4), the HamiltonianH is defined by the Legendre transformation

H =

∫∫∫
u · ẋ da−L ,

with ẋ expressed in terms ofx andu using (21). If we now consider Hamilton’s principle in the
form

δ

∫ {∫∫∫
u · ẋ da−H (x,u)

}
dt = 0

for arbitrary variationsδx andδu in the positions and velocities of labeled fluid particles, the
canonical equations emerge in the form

ẋ =
δH

δu
, u̇ = −δH

δx
.
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3.6 Conserved Quantities, Noether’s Theorem and Casimir Functionals

To avail of the extraordinary simplicity of the Eulerian description of fluid systems, we are led
to consider generalized Hamiltonian systems with non-canonical form, capable of representing
the Eulerian framework. The simplicity of the Eulerian description is a result of the symmetry
property of the Hamiltonian, which remains unchanged under a re-labeling of the fluid particles
having the same density and entropy. This motivates the transformation to Eulerian variables but,
in the Hamiltonian context, it results in a non-canonical formulation. The transformation is a
projection to a reduced set of variables. In the reduced phase-space, canonical coordinates do not
exist.

For non-canonical systems, there are invariants of the motion arising from two sources. First,
as for canonical systems, symmetries of the Hamiltonian are associated with constants of motion
through Noether’s theorem. Letz be the set of dependent field variables. IfH andJ are invariant
under arbitrary translation of a particular coordinatexk, andM is a functional satisfying

J
δM

δz
= − ∂z

∂xk
, (22)

thenM is a constant of the motion:dM /dt = 0.
Additional conserved quantities, the Casimirs, appear in the non-canonical formulation. They

are solutions of the equation

J
∂C

∂z
= 0 .

Since this is a homogeneous version of (22), solutions of that equation are determined only up to
addition of a Casimir. Thus, for example, a Casimir may be added to the Hamiltonian without
any effect on the dynamics.

EXAMPLE 7: GUESSING THEHAMILTONIAN FORMULATION As an example of how the Hamiltonian formulation
of a fluid dynamical system may be derived in a heuristic manner, consider non-divergent two-dimensional flow in a
non-rotating coordinate system. The equations of motion are

dV
dt

+
1
ρ0
∇p = 0 , ∇ ·V = 0 ,

whereV = (u, v) is the non-divergent velocity,ρ0 is the constant density andp the pressure. Assuming a simply-
connected domain with impermeable boundary, the conserved energy is

E =
∫∫

1
2V ·V dxdy .

The velocity may be expressed in terms of a stream functionψ, such that(u, v) = (−ψy,+ψx). The vorticity
ζ = ∇2ψ is conserved following the flow:

dζ

dt
=
∂ζ

∂t
+ ∂(ψ, ζ) = 0 (23)

where∂(α, β) = αxβy − αyβx is the Jacobian.
We now proceed by intuition. Since the vorticity is a fundamental conserved quantity, we choose it as the

Hamiltonian variable,z = ζ. The Hamiltonian is guessed to be the energy, written

H =
∫∫

1
2∇ψ·∇ψ dxdy .
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Then the variational derivative ofH is easily calculated:

δH =
∫∫

∇ψ·∇δψ dxdy =
∮
ψ∇δψ·n ds−

∫∫
ψ∇2δψ dxdy =

∫∫
(−ψ)δz dxdy ,

so thatδH /δz = −ψ (we have taken the arbitrary constant boundary value ofψ to be zero). We knowzt = ∂(z, ψ),
so we can write (23) in generalized Hamiltonian form

∂z

∂t
= J

δH

δz
(24)

where the symplectic operator is given byJ(F ) = −∂(z, F ). We may alternatively write the system in terms of a
Poisson bracket:

∂F

∂t
=

{
F ,H

}
= −

∫∫
δF

δz
∂

(
z,
δH

δz

)
dxdy .

The Casimirs of the system are the solutions of

J
δC

δz
= ∂

(
z,
δC

δz

)
= 0 .

Clearly,J(z) = 0 and indeed any functionf(z) is annihilated byJ . Thus,

δC (z)
δz

= f(z) or C (z) =
∫∫ [∫

f(z) dz
]
dxdy .

so that the Casimirs of the system are just integrals of arbitrary functions of the vorticity.
To conclude that (24) is in generalized Hamiltonian form, it is necessary to prove that the symplectic operatorJ

has the required properties. Obviously, it is skew-symmetric in its arguments. The proof that it satisfies the Jacobi
identity requires more algebra, which we omit (see, e.g., Swaters (2000) for details).

4 Reduction from Lagrangian to Eulerian Form

Normally, the Lagrangian (i.e., particle-following) representation of fluid systems leads to a
canonical Hamiltonian formulation. This is generally not the case for the Eulerian formulation.
One may well wonder how the non-canonical formulation of a general Eulerian fluid-dynamical
system may be found. A number of specific formulations have been arrived at by inspired guess-
work. However, this is not a satisfactory method in general, Moreover, it requires an explicit
demonstration that the posited symplectic operator has the appropriate algebraic properties. The
proof that a givenJ or Poisson bracket satisfies the Jacobi identity can be challenging.

A more satisfactory way of deducing the Hamiltonian formulation of an Eulerian representa-
tion is by reduction of the (canonical) Lagrangian formulation. This has at least three advantages.
It allows us to proceed in a logical and deductive fashion, which is more appealing that guess-
work. It ensures that the algebraic properties of the Lagrangian formulation carry over to the
Eulerian representation. It elucidates the origin of the Casimir functions, which are absent in the
canonical formulation. These functions arise through symmetries in the Lagrangian form arising
from the particle-relabeling symmetry, which is hidden in the Eulerian framework.

In the Lagrangian formulation, the state of a fluid system is specified by means of the position
x(a,τ ) and velocityu(a,τ ) of every fluid particle, as functions of the timeτ . The particles are
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labeled by coordinatesa, the label of each particle remaining unchanged. Thus, the state of the
system at any time is determined by the six Lagrangian fields

{x(a),u(a)} .

In the Eulerian formulation, the required fields are the velocity, density and entropy given as
functions of position:

{u(x), ρ(x), S(x)} . (25)

These are determined uniquely from the Lagrangian fields. However, as there are only five Eule-
rian fields, they may be represented as points in a reduced phase-space.

For two arbitrary functionals of the Lagrangian state of the fluid,F (x(a),u(a)) and
G (x(a),u(a)), the Poisson bracket is defined by

{F , G }L =

∫∫∫ {
δF

δx(a)
· δG

δu(a)
− δF

δu(a)
· δG

δx(a)

}
da (26)

If we consider an arbitrary transformation to new independent variablesy and new dependent
variablesvi(y), the bracket may be expressed as

{F , G } =

∫∫∫ ∫∫∫ {
δF

δvi(y1)
{vi(y1), vj(y2)}L

δG

δvj(y2)

}
dy1dy2 (27)

where{vi(y1), vj(y2)}L is calculated using (26).

EXAMPLE 8: THE CHAIN RULE. First, consider a finite-dimensional system, and consider a coordinate transfor-
mationZi = Zi(z). The symplectic operator in terms of the new variables is

J̃ ij =
∂Zi

∂zm
Jmn ∂Z

j

∂zn
(28)

It is a second order contravariant tensor.
There is a formal similarity between (28) and (27). The latter is the generalization to continuous fields of the

discrete transformation. We consider a change from Lagrangian independent variablesa to Eulerian variablesx(a)
and of dependent Lagrangian fieldsuk = {x(a),u(a)} to Eulerian fieldsvk = {u(x), ρ(x), S(x)}. Then the
variational derivative of an arbitrary functionalF with respect to the old variables is given in terms of the new ones
by

δF

δui
=

∫∫∫
δF

δvk

δvk

δui
dx .

This is the chain rule for variational derivatives. If it is applied to the Poisson bracket (26), the transformation rule
(27) results.

If the functionalsF andG depend onx(a) andu(a) only through the Eulerian fields (25), we
can use (27) to derive a Poisson bracket in terms of the Eulerian fields. The algebra is formidable
and we just present the result here; see Morrison and Greene (1980) for the lengthy calculations.
The Eulerian bracket is

{F , G }E = −
∫∫∫ { [

δF

δρ
∇·δG

δu
+

δF

δu
·∇δG

δρ

]
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+

[
∇× u

ρ
·
(

δG

δu
× δF

δu

)]
+

[
∇S

ρ
·
(

δF

δS

δG

δu
− δG

δS

δF

δu

)] }
dx (29)

A more general formulation, applicable to magnetohydrodynamics, and a hierarchy of simplifi-
cations of it, are discussed in Morrison (1982).

This Poisson bracket provides a Hamiltonian formulation in terms of the Eulerian variables
(25). The evolution of the system is given by

dF

dt
= {F , H }E

where the Hamiltonian is

H =

∫∫∫
ρ

{
1
2
u · u + E(ρ−1, S) + Φ

}
dx .

The bracket (29) inherits crucial properties from its Lagrangian forbear (26). It is skew-symmetric
and satisfies the Jacobi identity. However, it is singular. If we define the potential vorticity by

q =
∇× u · ∇S

ρ
,

it can be shown that for any functionalC (q) one has

{F , C }E = 0

for all functionalsF . The singular nature of the Poisson bracket is a consequence of the projec-
tive nature of the transformation from Lagrangian to Eulerian coordinates.

EXAMPLE 9: A SIMPLE REDUCTION. To illustrate the algebraic process of reduction of the Poisson bracket in
a simple case, we consider the one-dimensional, non-rotating shallow water equations. Assume an incompressible
fluid of densityρ; without loss of generality, we may setρ = 1. The Lagrangian coordinates are(a, b, c) but, as
there is noy-dependence,b is constant and is ignored. The position and velocity arex(a, c, τ) andẋ(a, c, τ), but we
assume material columns remain vertical so thatx = x(a, τ), ẋ = ẋ(a, τ). Labels are assigned so that

da = h dx (30)

whereh(a, τ) is the depth. A mass element is given bydm = dadc = dxdz which impliesdz = h dc or, after
vertical integration, thatc varies from zero atz = 0 to unity atz = h. Differentiation of (30) yields the continuity
equation

∂h

∂τ
+ h

∂u

∂x
= 0 .

The Lagrangian is given by

L =
∫∫

[ 12 ẋ
2 − gz]dadc =

∫
1
2 [ẋ2 − gh]da

and the resulting Euler-Lagrange equation is

∂ẋ

∂τ
+ g

∂h

∂x
= 0 .
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The generalized momentum isp ≡ δL /δẋ = ẋ ≡ u, and the Hamiltonian is

H =
∫

1
2 [u2 + gh]da .

whereh = h(x) is shorthand forda/dx.
The Lagrangian independent variables area andτ and the dependent fields arex = x(a, τ) andu = u(a, τ),

which are canonical coordinates. The Eulerian independent variables arex and t and the dependent fields are
u = u(x, t) andh = h(x, t). The canonical Poisson bracket is defined by (26):{

F ,G
}

L
=

∫ {
δF

δx(a)
· δG
δu(a)

− δF

δu(a)
· δG
δx(a)

}
da .

To apply (27), we need to evaluate the fundamental brackets such as{u(x1), u(x2)}L, and this in turn requires
knowledge ofδu(x1)/δx(a) and other similar variational derivatives. We must expressu(x1) andh(x1) as func-
tionals ofx(a) andu(a). We write

u(x1) =
∫
u(a)δ(a− a1) da ,

wherea1 is the label corresponding tox1. Thus

δu(x1)
δx(a)

= 0 and
δu(x1)
δu(a)

= δ(a− a1) .

Similarly, expressingh(x1) as

h(x1) =
∫
h(x)δ(x− x1) dx =

∫
δ(x(a)− x(a1)) da ,

we find that
δh(x1)
δx(a)

=
∂

∂x
δ(x− x1) and

δh(x1)
δu(a)

= 0 .

These expressions enable us to evaluate the fundamental brackets, giving

{u(x1), u(x2)}L = 0 , {h(x1), h(x2)}L = 0 , {u(x1), h(x2)}L = − ∂

∂x1
δ(x1 − x2) .

Then the Eulerian bracket is given by{
F ,G

}
E

=
∫∫ {

δF

δu(x1)
{
u(x1), h(x2)

}
L

δG

δh(x2)
+

δF

δh(x1)
{
h(x1), u(x2)

}
L

δG

δu(x2)

}
dx1dx2 ,

and, after insertion of the expressions for the Lagrangian brackets on the right, we arrive at{
F ,G

}
E

=
∫ {

∂

∂x

(
δF

δu

)
δG

δh
− δF

δh

∂

∂x

(
δG

δu

)}
dx . (31)

The Hamiltonian in the Eulerian framework is

H =
∫

1
2 [u2 + gh]hdx

which implies the functional derivativesδH /δu = hu andδH /δh = 1
2u

2 + gh. The Poisson bracket (31) enables
us to identify the symplectic operatorJ through the relationship{F ,G } = 〈F , JG 〉. After integration by parts,
assuming periodic boundary conditions, we see that

J =
(

0 −∂x

−∂x 0

)
. (32)
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Definingz = (u, h)T, the generalized Hamiltonian system of equations

∂z

∂t
= J

δH

δz
(33)

then yields the usual Eulerian form of the equations of motion:

∂u

∂t
+

∂

∂x
( 1
2u

2 + gh) = 0 ,
∂h

∂t
+

∂

∂x
(hu) = 0 .

The Eulerian Poisson bracket (31) automatically satisfies the Jacobi identity, as it is derived from the canonical form
by means of a covariant transformation

5 Shallow Water Equations

We consider the motion of a shallow layer of incompressible fluid above a flat surface in a rotating
coordinate system. The height of the free surface ish. It is dynamically consistent to assume
material columns remain vertical, and that each vertical column is identified by two Lagrangian
labels,a andb. Then the position of a column is

x = x(a, b, τ) , y = y(a, b, τ) .

We require these labels to be assigned in such a way that

h =
∂(a, b)

∂(x, y)
. (34)

Then the third, or vertical, labelc must be chosen so that

ρ0 =
∂(a, b, c)

∂(x, y, z)
=

∂(a, b)

∂(x, y)

∂c

∂z
= h

∂c

∂z
. (35)

This can be integrated immediately to give

z =
hc

ρ0

,

so thatc varies from zero atz = 0 to ρ0 at the free surface. The continuity equation follows
through differentiation of (34):

∂h

∂τ
+ h∇ · v = 0 , (36)

wherev = (u, v) = (∂x/∂τ, ∂y/∂τ).

EXAMPLE 10: ROTATING COORDINATES. A particle in a potential fieldV (X) has Lagrangian

L = 1
2Ẋ · Ẋ− V (X) .
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Let x be the coordinates in a frame rotating with constant angular velocityΩ. For simplicity, we assume that the
potential energy is unaffected by rotation, so thatV (x) = V (X). The velocities in the two frames are related by
Ẋ = ẋ + Ω× x, so the Lagrangian in the rotating frame is

L = 1
2 ẋ · ẋ + Ω× x · ẋ + 1

2 (Ω× x)2 − V (x) . (37)

Using (2), the equations of motion may be written immediately:

ẍ + 2Ω× ẋ + Ω× (Ω× x) +
∂V

∂x
= 0 . (38)

Here we have used the vector identity(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C), which leads to

∂

∂x
[ 12 (Ω× x)2] = Ω2x− (Ω · x)Ω = −Ω× (Ω× x) .

The second term in (38) is the Coriolis term. The third term is the centrifugal force, which is often combined with
V to give an effective potential; we assume this done.

The Hamiltonian is defined by introducing the generalized momentum

p =
∂L

∂ẋ
= ẋ + Ω× x .

We note thatp is not the usual momentum in the rotating frame, but the absolute momentum. The Legendre
transformation now yields

H = p · ẋ− L = 1
2 ẋ · ẋ + V (x) .

Mirabile visu, the rotationΩ appears to have disappeared. But no! We must expressH as a function of the canonical
variablesp andx:

H = 1
2 (p−Ω× x) · (p−Ω× x) + V (x) (39)

so its dependence on rotation is now explicit. The canonical equations (5) now yieldẋ = ∂H/∂p, together with
(38).

5.1 Lagrangian Equations in a Rotating Frame

To allow for the Coriolis effect, it is necessary to include additional terms in the Lagrangian. We
introduce the notionalworld-wind, W, which is the velocity, measured in an absolute frame, of
an atmosphere in solid rotation with the earth:

W = (U, V, 0) = Ω× x .

On the sphere, the world-wind is, in geographic coordinates,W = (Ωa cos φ, 0, 0). It has vortic-
ity equal to the planetary vorticityf :

k · ∇ ×W =
1

a cos φ

[
∂V

∂λ
− ∂

∂φ
(U · cos φ)

]
= 2Ω sin φ = f .

For anf -plane, withΩ = Ωk, we haveW = (−Ωy, Ωx, 0). In any case, the relative and absolute
vorticity are given by

ζ = k · ∇ × v and ζ + f = k · ∇ × (v + W) .
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The total energy of the fluid is given, in Lagrangian variables, by

E =

∫∫∫ [
1
2

∂x

∂τ
·∂x

∂τ
+ W·∂x

∂τ
+ 1

2
W ·W + E

(
∂x

∂a
, S

)
+ Φ(x)

]
dadbdc . (40)

The gravitational potential isΦ = gz. For incompressible, adiabatic flow, the internal energy
E(α, S) may be omitted, as it is unaffected by variations in the positionsδx and plays no role
in the dynamics. The constant density is given by (35). We neglect the small term in the kinetic
energy involving the vertical velocity. The vertical integration may be carried out explicitly,
yielding

E =

∫∫
1
2
ρ0

{∂x

∂τ
·∂x

∂τ
+ 2W·∂x

∂τ
+ W ·W + gh

}
dadb . (41)

For simplicity, and without loss of generality, we will assumeρ0 = 1. In the Lagrangian frame-
work, the variableh is defined by (34). The Lagrangian, required to derive the equations from
the least action principle, is

L =

∫∫
1
2

{
∂x

∂τ
·∂x

∂τ
+ 2W·∂x

∂τ
+ W ·W − gh

}
dadb . (42)

Applying the least action principle, we arrive at the equations of motion

∂2x

∂τ 2
+ 2Ω×∂x

∂τ
+ Ω× (Ω× x) + g∇h = 0 . (43)

Here, the spatial variation ofW has been carefully allowed for, and we have used the following
relationship, which is proved without difficulty:∫∫

Fδh dadb =

∫∫
1

h
∇Fh2·δx dadb (44)

(Salmon (1998), p. 317). In thetraditional approximation, only the vertical component ofΩ
is retained in the Coriolis term. Then (43), together with the continuity equation (36), may be
written

∂2x

∂τ 2
− f

∂y

∂τ
+ g

∂h

∂x
= 0 (45)

∂2y

∂τ 2
+ f

∂x

∂τ
+ g

∂h

∂y
= 0 (46)

∂h

∂τ
+ h∇ · v = 0 . (47)

(Since the centrifugal term depends only on position, it has been absorbed in the gravitational
potential by adjusting the value ofg). This is the shallow water system of equations in Lagrangian
form.



Peter Lynch Hamiltonian Methods 23

5.2 Hamiltonian Form of the Equations

The generalized momentum is defined as

p ≡ u =
δL

δẋ
= ẋ + W .

Thus,p is the absolute momentum. The Hamiltonian is now obtained via the Legendre transfor-
mation

H =

∫∫
u · ẋ dadb−L =

∫∫
1
2
[ẋ · ẋ−W ·W + gh] dadb ,

This must be expressed in terms of the canonical variablesu andx:

H =

∫∫ [
1
2
u · u− u ·W + 1

2
gh

]
dadb ,

so that the world-wind appears explicitly inH . Taking a variation of this we get

δH =

∫∫ [
(u−W)·δu + Ω× u·δx + g∇h·δx

]
dadb .

Thus, the variational derivatives ofH may be obtained:

δH

δx
= Ω× u + g∇h ,

δH

δu
= u−W . (48)

Definingz = (x,u)T, the equations of motion may be written as

∂z

∂τ
= J

δH

δz
,

where the symplectic operatorJ is in the canonical form (9). The Poisson bracket also takes the
canonical form

{F , G }L =

∫∫ {
δF

δx(a)
· δG

δu(a)
− δF

δu(a)
· δG

δx(a)

}
da . (49)

5.3 Eulerian Form of the Equations

We could derive the Eulerian form of the Poisson bracket by transformation of (49), following
the method of Example 9, but will deduce it by more intuitive reasoning (this section borrows
heavily from Shepherd, 1990). The Eulerian independent variables arex = (x, y) and timet.
The dependent variables arev = (u, v) andh, and we will explore whetherz = (u, v, h)T are
suitable coordinates. We willguessthat an appropriate form for the Hamiltonian is

H =

∫∫
1
2
h
{
v · v + gh

}
dxdy . (50)
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The factorh comes from the transformation
∫

( )dadb =
∫

( )h dxdy. We consider the variation
of H resulting from variations of the variablesv andh, and find that

δH

δh
= 1

2
v · v + gh ,

δH

δv
= hv .

If the advection is transformed using the vector identity

v · ∇v = ∇1
2
v · v + ζk× v

whereζ = k · ∇ × v is the vorticity, the equations (45) to (47) can be written

∂u

∂t
= +(ζ + f)v − ∂

∂x
(1

2
v · v + gh)

∂v

∂t
= −(ζ + f)u− ∂

∂y
(1

2
v · v + gh)

∂h

∂t
= − ∂

∂x
(hu)− ∂

∂y
(hv)

(once again, the centrifugal term is absorbed ing). Defining the potential vorticity

q =
k · ∇ × v + f

h
=

ζ + f

h
,

the system may be written in generalized Hamiltonian form

∂z

∂t
= J

δH

δz
(51)

wherez = (u, v, h)T and the symplectic operatorJ is given by

J =

 0 q −∂x

−q 0 −∂y

−∂x −∂y 0

 . (52)

A Poisson bracket is associated withJ through the relationship{F , G } = 〈F , JG 〉. Although
the matrix operatorJ in (52) is not skew-symmetric, the appropriate symmetry of the Poisson
bracket appears after integrations by parts. The bracket may be written

{F , G } =

∫∫ {
qk·

(
δF

δv
× δG

δv

)
+

(
∇·δF

δv

)
δG

δh
− δF

δh

(
∇·δG

δv

)}
dxdy (53)

which is clearly a skew-symmetric bilinear operator. It can be shown that this Poisson bracket
satisfies the Jacobi identity.
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6 Balanced Equations

One of the attractions of the Hamiltonian formalism is that it guarantees that conservation prop-
erties of an exact system are maintained in approximations thereto if appropriate symmetries of
the exact system are preserved in the approximation process. Thus, the time-invariance of the
approximate Hamiltonian will ensure an appropriate energy principle, and the particle-relabeling
symmetry will mean that potential energy for the approximate system is conserved. The Hamil-
tonian perspective can also serve as a guide to the choice of new dependent and independent
variables in which the approximate equations take their simplest form.

6.1 Non-divergence Constraint in Lagrange Variables

As a simple example of further approximation to the shallow water equations, we impose a con-
straint that the horizontal flow be non-divergent:

∇ · ẋ = 0 .

This constraint is imposed through the procedure of incorporating an additional term with La-
grange multiplier in the integrand in Hamilton’s Principle. We require that the variation of the
action, modified by the constraint, be stationary:

δ

∫ {
L +

∫∫
λ(∇ · ẋ) dadb

}
dτ = 0

whereλ = λ(a, b, τ) is the Lagrange multiplier, to be found, andL is the Lagrangian of the
shallow water equations, given by (42). The variationsδx (taken for fixed particle labels and
times) are arbitrary but vanish at the end times and the domain boundaries. The solution for
unconstrained motion was derived in§5.1 and is given by (43). Additional terms arise through
the constraint:

δ

∫
dτ

{∫∫
λ(∇ · ẋ)dadb

}
=

∫
dτ

{∫∫
[(∇ · ẋ)δλ + λ(∇ · δẋ)] dadb

}
.

The vanishing of the coefficient ofδλ ensures that the constraint is satisfied at all locations and
all times. The second term is, after some manipulation,∫

dτ

{∫∫
λ(∇ · δẋ)dadb

}
=

∫
dτ

{∫∫ [
1

h

∂

∂τ
∇(hλ)

]
·δx dadb

}
so that (43) is augmented by an additional term:

∂2x

∂τ 2
+ 2Ω×∂x

∂τ
+ Ω× (Ω× x) + g∇h +

1

h

∂

∂τ
∇(hλ) = 0 . (54)

The continuity equation (36) reduces in this case to the consistency condition

∂h

∂τ
= 0 .



Peter Lynch Hamiltonian Methods 26

This is physically reasonable: an individual fluid column cannot vary in height as, without any
influx or outflow, there is no mechanism for supplying or removing fluid. Thus, flow must be
along contours of constant heighth.

How do we calculateλ? The momentum equation may be written

d

dt

1

h
∇(hλ) +

du

dt
+ 2Ω× u + g∇h = 0 . (55)

whereu = dx/dt and the centrifugal term is included ing. We take the divergence of this and
use the fact that∇ · u = 0 to obtain a prognostic equation forλ. We note the relationship, valid
for any vector:

∇·dC
dt

=
d

dt
(∇·C) + (∇·C)2 − 2J(C1, C2) .

Defining the modified gradient and Laplacian operators

∇̃λ ≡ 1

h
∇(hλ) and ∇̃2λ ≡ ∇ · ∇̃λ

and using the above relationship, the following equation forλ results:

d

dt
(∇̃2λ) + (∇̃2λ)2 − 2J((∇̃λ)1, (∇̃λ)2) = −

[
g∇2h + fζ − βu− 2J(u, v)

]
.

This can be used as a predictive equation for∇̃2λ, after whichλ may be extracted through
solution of an elliptic equation.

6.2 Salmon’s L-1 System

Salmon (1983) derived a filtered system of equations by introducing approximations directly into
the Lagrangian and then applying Hamilton’s principle. Our starting point is the Lagrangian
function (42) in Lagrange variables (with the centrifugal term absorbed in the gravitational po-
tential:

L =

∫∫
1
2

{
∂x

∂τ
·∂x

∂τ
+ 2W·∂x

∂τ
− gh

}
dadb .

As an initial simplification, we omit the first term entirely and consider the approximate La-
grangian

L0 =

∫∫ {
W·∂x

∂τ
− 1

2
g

∂(a, b)

∂(x, y)

}
dadb .

Variations in the particle locations yield the geostrophic relationships for wind in terms of geopo-
tential height. Since mass conservation is unaffected, the following set of equations obtains:

fv = g
∂h

∂x
, fu = −g

∂h

∂y

dh

dt
+ h

(
∂u

∂x
+

∂v

∂y

)
= 0 .
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This level of approximation is too drastic for most purposes. We refine it by substituting the
geostrophic expression selectively in the Lagrangian, to obtain

L1 =

∫∫
1
2

{
uG·

∂x

∂τ
+ 2W·∂x

∂τ
− gh

}
dadb . (56)

Variations of the particle locations now yield the equation

duG

dt
+ uG · ∇uA + fk× u + g∇h = −g

h
∇B (57)

where the quantityB is defined by

B = h2k · ∇ × (uA/f) + 1
2
h2[uA ×∇(1/f)]·k ,

whereuA = u− uG is the ageostrophic wind. This equation contains the exact Coriolis and
pressure gradient terms, but the advectiondu/dt is approximated by neglecting the local rate of
change of the ageostrophic wind,∂uA/∂t, and the termuA · ∇uA. The former omission has
the effect of filtering out gravity wave solutions from the system. The continuity equation is
unchanged in form.

The conservation laws for this ‘L-1 system’ follow directly from those of the unapproximated
system. The conserved energy quantity is∫∫

1
2
{u2

G + v2
G + gh} dadb

and the geostrophic potential vorticity[
1

h

(
∂vG

∂x
− ∂uG

∂y
+ f

)]
is constant for each fluid particle.

6.3 Hamilton’s Principle in Euler Variables

The variational derivation of Eulerian equations is more difficult. We follow the method of Holm
(1996). The action is minimized under variations of particle labelsa = (a, b) at constant Eulerian
positionx and timet. The Lagrangian is given by

LE =

∫∫ {
1
2
h (u · u + 2W·u− gh)

}
dxdy . (58)

Hamilton’s principle requires that the variation of the actionδ
∫

LEdt vanish. In terms of varia-
tions of the Euler variables, this is∫

dt

∫∫
dxdy

{
h(u + W) · δu + 1

2
(u · u + 2u ·W − gh)δh

}
.
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To proceed, we require expressions forδu andδh in terms of the label variationsδa andδb. Since
the labelsa = (a, b) = aα are constant following the motion, we have

daα

dt
=

∂aα

∂t
+ u

∂aα

∂x
+ v

∂aα

∂y
= ∂ta

α + uj∂ja
α = 0 ,

where∂t = ∂/∂t and (∂1, ∂2) = (∂/∂x, ∂/∂y). Thus, the Eulerian velocities and labels are
related by

∂ta
α = −(J )α

i ui and ui = −(J −1)i
α∂ta

α

where the matrixJ and its inverse are given by

J =

(
ax ay

bx by

)
and J −1 =

1

h

(
by −ay

−bx ax

)
.

Note that the determinant ofJ is h. It then follows that the variations ofu and h may be
expressed in terms of label variations:

δui = −(J −1)i
α(∂tδa

α + uj∂jδa
α) and δh = h(J −1)i

α∂iδa
α . (59)

By means of these relationships, it is possible to express the variation of action purely in terms of
variations of the particle labels. However, considerable algebraic manipulation is required. The
following relationships are easily proved:

d

dt
(J −1)i

α = (J −1)j
α(∂ju

i) and ∂i(h(J −1)i
α) = 0 . (60)

By means of these, using the appropriate boundary conditions after partial integrations, and em-
ploying the continuity equation, the integrand of the action may be written eventually as{

h(J −1)i
α

[
dui

dt
+ uj(∂jW

i − ∂iW
j) + g∂ih

]}
δaα .

Since the label variations are arbitrary, the quantity in square brackets has to vanish at all points
and times. We note that

uj(∂jW
i − ∂iW

j) = f(k× u)i

so that, finally, the usual form of the momentum equation is obtained:

du

dt
+ f(k× u) + g∇h = 0 . (61)

This is now seen as the consequence of Hamilton’s principle for the shallow water system in
Eulerian variables.
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6.4 Balanced Eulerian Systems

We will describe a simple balanced system derived by Allen and Holm (1996) and discuss various
ways in which it can be generalized. The Lagrangian (58) may be written

LE =

∫∫ {
h(W + u) · u− 1

2
gh2 − 1

2
hu · u

}
dxdy . (62)

We assume the Rossby numberε is small and partition the wind field into geostrophic and
ageostrophic components:u = uG + εuA. Keeping terms up toO(ε), the Lagrangian may
be written

LE =

∫∫ {
h(W + uG) · u− 1

2
gh2 − 1

2
h(uG · uG)

}
dxdy . (63)

Then, following arguments similar to those in the preceding section, Hamilton’s principle (with
variations of Lagrangian labels at constant Eulerian positions and time) results in the following
system:

∂uG

∂t
+ [∇× (W + uG)]× u +∇B = 0

∂h

∂t
+∇ · hu = 0

where the Bernoulli functionB is defined as

B =
[
gh + 1

2
uG · uG + (1/F )k · ∇ × [h(u− uG)]

]
,

whereF is the Froude number. This system is closely related to Salmon’s L-1 system, derived
using Hamilton’s principle in Lagrange variables (with variations in particle paths at fixed time
and Lagrangian labels).

A similar system may be derived much more simply by replacingu by uG as the variable
operated on byd/dt in the momentum equation (61). This was the approach adopted by Eliassen
(1948) to derive the system known as the geostrophic momentum approximation. This system
is equivalent to orderO(ε) with the one obtained here. However, such a cavalier approach has
its pitfalls: the system derived through Hamilton’s principle conserves total energy and poten-
tial vorticity of fluid parcels, whereas there is no guarantee that the system derived byad-hoc
methods respects these principles. The additional terms of orderO(ε2) which are retained in ths
Hamiltonian approach are precisely those needed for energy and potential vorticity conservation.

Allen and Holm (1996) show that more accurate systems may be derived by retaining terms of
higher order in the Rossby number. Holm (1996) presents a baroclinic system which he calls the
Hamiltonian balance equations (HBE). Finally, Holm, Marsden and Ratiu (2002) present a hierar-
chy of equation systems based on successively stronger approximations to the Lagrangian. Start-
ing with the Euler equations for three-dimensional flow, incompressibility is enforced through
a constraint in which the Lagrange multiplier turns out to be the pressure. When the buoyancy
is constrained to be small, the Euler-Boussinesq system is obtained. The hydrostatic primitive
equations follow upon assuming that the aspect ratio is small. Expansion in the Rossby number
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then leads to a sequence of balanced systems, HBE, Salmon’s L-1 system and the classical quasi-
geostrophic equations. At all stages, the Hamiltonian formalism ensures that appropriate energy
and potential vorticity principles apply, This is so because the approximations do not disrupt the
symmetry properties of the Hamiltonian.

7 Summary

The powerful methods of Hamiltonian mechanics have significant benefits when applied to geo-
physical fluid dynamics problems. The methods have been introduced first in the context of
finite-dimensional mechanical systems, with illustration of several key ideas through application
to the elastic pendulum or swinging spring. The Lagrangian formulation of the fluid dynami-
cal equations has been presented, and compared to the more familiar Eulerian formulation. The
process of reduction from Lagrangian to Eulerian formulation has been described. The rotating
shallow water equations have been taken as a simple example of a geophysical equation system,
and various Hamiltonian forms of the equations have been presented. Finally, the passage from
‘exact’ to ‘approximate’ equations, through application of constraints with Lagrange multipliers,
or by other means, has been described, and a number of balanced systems resulting from the
process have been presented.

The methods developed in this brief introduction are of very general applicability. There is a
wide range of possibilities for deriving approximate systems of equations with varying levels of
accuracy. One particular sequence of filtered equations was proposed long ago by Hinkelmann
(1969). He proposed a general method for defining initial data for the primitive equations. He
argued that the observed mass and wind fields should be adjusted so that

d n(∇ ·V)

dt n
= 0 and

d n+1(∇ ·V)

dt n+1
= 0. (2.2)

That is, these two conditions should be used to derive diagnostic relationships which the initial
data are then required to satisfy. As an alternative, he pointed out that the two conditions could be
used to replace two prognostic equations by diagnostic relationships, yielding a general filtered
system. The casen = 0 yields the quasi-geostrophic equations, while the casen = 1 leads
to the slow equations (Lynch, 1989). It is proposed, in a future investigation, to implement the
Hinkelmann hierarchy using the Hamiltonian formalism.
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