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Abstract

The value of general Hamiltonian methods in geophysical fluid dynamics has become clear over recent
years. This paper provides an introduction to some of the key ideas necessary for fruitful application
of these methods to problems in atmosphere and ocean dynamics. Hamiltonian dynamics is reviewed
in the context of simple particle dynamics. The non-canonical formalism which is required for fluid
dynamics is introduced first in the finite-dimensional case. The Lagrangian and Eulerian formulations
of the fluid dynamical equations are then considered, and the method of reduction from Lagrangian
to Eulerian form is described. Rotational effects are introduced in the context of the shallow water
equations, and these equations are expressed in Hamiltonian form in both Lagrangian and Eulerian
variables. Finally, simple balanced systems are derived, in which constraints are imposed on the fluid
motion by applying least action principles to Lagrangians modified either by additional terms with
Lagrange multipliers or by direct approximation.
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1 Introduction

The application of general Hamiltonian methods to fluid dynamics has been an area of increasing
interest over the past few decades. A number of reviews have appeared, and this paper has bor-
rowed heavily from several of them. We refer in particular to review papers by Salmon (1988a),
Shepherd (1990) and Morrison (1998), and to the recent textbook of Salmon (1998). The under-
lying theory has considerable aesthetic appeal and the methods of generalized analytical dynamics
are powerful. A specific example is Noether’s Theorem, which provides a connection between
continuous symmetries of the Hamiltonian function and conservation laws of the system.

We will examine the application of Hamiltonian theory in its generalized formulation to prob-
lems in geophysical fluid dynamics. The canonical form which is applicable to many finite-
dimensional systems is not the appropriate framework; indeed, it was the undue emphasis on
the canonical equations which hampered progress in Hamiltonian fluid dynamics for so long. A
more general formulation is required; this is presente@2irbelow. It consists of identifying
appropriate generalized coordinates Hamiltonian functiorf/ (z) and a symplectic operatdr
having special algebraic properties. Some of the new ideas are illustrated through the example of
the swinging spring, a simple mechanical system with interesting properties (Lynch, 2002a).

There are several advantages associated with the general Hamiltonian formulation. First,
Hamiltonian methods are not tied to a particular coordinate system. The freedom to choose coor-
dinates can result in significant simplifications of the equations. Second, due to the relationship
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between symmetries and conservation laws, approximations which conserve symmetries of the
Hamiltonian also retain analogues of the conservation laws of the exact system. Thus, various
balance systems may be derived, which have energetics consistent with the systems from which
they are derived. Thirdly, the general Hamiltonian framework can be a powerful starting point for
perturbation analysis. Approximations may be introduced directly into the system Hamiltonian
or Lagrangian functioteforethe least action principle is used to obtain approximate equations.
The average Lagrangian technique is frequently easier to apply than alternative perturbation tech-
nigues.

2 Finite Dimensional Mechanical Systems

2.1 The Canonical Equations

The state of a mechanical system with degrees of freedom, comprising a finite collection
of discrete particles, can be specified by the generalized coordifgtes = 1,2,..., N} as
functions of the time. The dynamics of the system are determined by the Lagradgiani’—V/,
the difference between the kinetic and potential energies. The Lagrahgiatd.(q,, ¢,,t) is a
function of the coordinateg,, the velocitiesj, and possibly the timeé. The evolution of the
system may be determined from Hamilton’s principle

to
5/ Ldt=0 (1)
0

where the variatiod is the change in the actiofi Ld¢ resulting from variationgg,, which vanish
at the initial and final time$ = 0 andt = ¢,. The solution of this variational problem yields the
Euler-Lagrange equations
d oL 0L
A o= 2)
dt 0g,  0Oqn
Note that the dynamics is unaffected by scalinglobr addition of an arbitrary constant to it:
L — oL + ( with o and 3 constant does not result in any change to (2).

EXAMPLE 1: THE SWINGING SPRING . The Lagrangian of a spherical elastic pendulunswimging springnay
be written .
L=3im(@?+ 9%+ 2% — 1k(r — €)* — mgz

wherem is the mass of the bols,the stiffness of the spring anthe acceleration due to gravity. The first right-hand

term is the kinetic energy, the second is the elastic potential energy and the third is the gravitational potential energy.
The coordinates argy, g2, g3) = (z,y, Z), cartesian coordinates centered at the point of suspension of the spring,
andr = y/x? + y2 + Z2. The equations of motion may be written immediately using (2):

k — ¢ k — 4 k -/
¢+(r 0>:v0, y‘+(r 0>y0, z+<r 0)z+90.
m T m T m r

The momentunp = (ma, my, m?) is obtained from derivatives of the Lagrangian with respect to the velocities.
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The generalized momentum is defined as

~ 0L(q,9)
Pn = 3—qn . 3

In typical conditions (for a non-singular Lagrangian) these equations may be inverted to obtain
g» as functions ofp,, andq,. We assume that this is the case. The Hamiltonian is defined by
means of the Legendre transformation

H(q,p) = pun — L(q,4).- (4)

We assume that (3) has been solvedjfep thatH is a function of the canonical variableand
q. Hamilton’s principle requires that the action

5/;0 {anqn — H(qm)} dt

is stationary for independent variatiotg, anddp,, with dq, vanishing at the end-times. This
results in Hamilton’sanonical equations

i " op A= g ©)

EXAMPLE 2: THE SWINGING SPRING Il. For the swinging spring, the Lagrangian of Example 1, approximated to
cubic order in the amplitudes, is

L=3 (2% 45" +2%) — 5 (wh(z® +¢°) + w}2%) + 300" +97)2, 6)
wherez, y andz are Cartesian coordinates centered at the point of equilibdwn= /g/¢, wz = \/k/m and
A\ = lyw%/¢%. For simplicity we assume: = 1. The generalized momenta ape., py, p-) = (&,7, 2), and the
Legendre transformation (4) yields the Hamiltonian

H = 3(p% +py +92) + 5 (Wh(2® +9°) +032°) — 32 +9°)z,

Then the canonical Hamiltonian equations are

z = Pz, pz = —w%x + Azz )
y=py, Py = —wry+Ayz, ()
Z=0p,, p. = —wsz+ %)\(xQ +92).

The casevy = 2wg is of special interest. In thigesonantcase, there is strong interchange of energy between the
swinging and springing motions (Lynch, 2002a,b). We consider the resonant case below.
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2.2 The Symplectic Form

If we define avectoz = 2' = {q1, ¢, ..., qn, P1, P2, - - -, D }» the full system (5) can be written
in vectorial form

z=JV,H.
or in tensorial form as oH
= JU 8
Ry ®)
where the matrix] = .J¥, called thesymplectic operatol,is defined by
— JuU —
= (% 8)- ©

The summation convention applies in (8) and below, where repeated indices are summed over
their ranges, unless otherwise indicated.

It is straightforward to show that” transforms as a second order contravariant tensor which
is skew-symmetric

JIt = — 4
and satisfies the Jacobi identity
. OJIk - QJk aJY
Jim Jim ka =0
0zm * ozm + ozm

If Jis non-singular then, according to Darboux’s Theorem (see, e.@.ahosSaletan, 1998), itis
possible to transform to coordinates for whi¢lassumes the canonical form (9).Jfis singular

the system is calledon-canonical In general,/ is a function of the coordinates A system is
Hamiltonian if we can specify a functioA and an operatoy, singular or otherwise, which is
skew-symmetric and satisfies the Jacobi identity, and such that the evolution is governed by (8).
The advantage of the formulation (8) is that it enables us to consider non-canonical dynamical
systems. ltis in this general form that the methods may be applied to continuous systems such as
fluids.

2.3 Poisson Brackets

The Poisson bracket of two functions of state is a bilinear operator defined as

OF G OF 3G
0¢n Op,,  Opy Oy,

{F7G}:

In terms ofz* and.J¥ it may be written
OF 06
0zt 027

The termsymplecticfrom the Greek for ‘intertwined’, was introduced in 1939 by Hermann Weyl in his BdwkClassical
Groups(Goldstein.et al,, 2002).

{F,G} = (20)
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and this form provides the definition valid for general Following from the properties of the
symplectic operatoy*, the Poisson brackets are also skew-symmetric

{F,G} =—-{G, F}
and satisfy the Jacobi identity
{EAF,G}}+{F.{G,E}}+{G,{E,F}}=0
for all state functiong”, F andG. The canonical equations may now be written in the form
G =A@, H},  Pn=A{pn. H},
or, in terms of the variable’ = {q1, ¢, ..., qn, P1, P2, - - -, PN }»
P ={ H}.
The time evolution of a general state functibz) = F'(q, p) is given by

dF
— ={F H}. 11
This is the evolution equation for a general Hamiltonian system.
A general Hamiltonian system consists of a phase-space and two geometric objects, a scalar
H and a Poisson brackét, } which is a skew-symmetric bilinear operator satisfying the Jacobi

identity.

EXAMPLE 3: THE SWINGING SPRING IIl. We apply the average Lagrangian technique to the swinging spring (see
Holm and Lynch, 2002, for details). The solution is assumed to be of the form

x = Ra(t) exp(iwrt)], y=RN[Db()exp(iwgt)], z=RN[c(t)exp(2iwgt)].

The coefficientsi(t), b(t) andc(t) are assumed to vary on a time scale which is much longer than the time-scale
of the oscillations. If the Lagrangian (6) is now averaged over the fast time, the Euler-Lagrange equations for the
modulation amplitudes are .

ia = ka*c, b= rb*c, i¢ = 1k(a® +b?)
wherex = A\/(4wg). If we now introduce new dependent variables A» and A defined by

Av=dnla+ib), Az=dn(a—ib), As=ine.

the modulation equations take the following form

Al = _A; AS ’
Ay = —AgAT, (12)
A3 = +A1As.

These are ththree-wave equations
The three-wave equations conserve the following three quantities,
H (A1 A2 A5 — ATASA3),
N = [A]*+]A + 2|45,
M |A1|2 — |As)?.
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The first, H = 2iS{A; A2 A%}, is the Hamiltonian of the system (see Holm & Lynch, 2002). The secihds a
measure of the energy of the oscillations and the thifdjs the angular momentum.

Definingz = (A1, Ag, A3, A}, A3, A%), the system (12) together with its complex conjugate can be written in
canonical form (8) with/ given by (9). Alternatively, if we writed,, = A,,g+iA,,; and define = (A1r, Aar, Asr)
andq = (Ai1, Aar, Asp), then (12) are in the canonical form (5).

2.4 Noether’'s Theorem

There is an intimate relationship between symmetry and invariance of dynamical systems. This
was first elucidated by Emmy Noether (1882—-1935). Symmetry is a geometric property in which
guantities remain unchanged under coordinate transformation. Invariance is an algebraic or an-
alytical property whereby ‘integrals of the motion’ are constant along system trajectories. We
consider a continuous family of coordinate transformatigiis) — ¢.(«, t) parameterized by a
single quantityw, such thaty, (t) = ¢,(0,t). For example, consider a translation along a single
direction,qx () = qx + « (for notational simplicity, we will drop the explicit dependencen

We assume that the Lagrangian is not altered by the transformafigric), ¢.(«)] = L|gn, dn),

which implies a symmetry of the system. Thus,

_ 9L 9u(0) | 9L diu(o)
T 9(@) 0a | 94u(a) Oa

= Llaa(0), )] - 0.

Sincegq, («) is a solution of Lagrange’s equations for amywe also have
i oL B oL
dt 0, () Ogn(v)

Combining these two equations gives

d ( oL >8qn(a) L 0L d <8qn(a>) _d { oL 3%(‘”] 0.

dt \ () O () dt \ da

In particular, this holds forv = 0. Thus, the quantity

oL 0q, aq,
=__-_, " 13
8, 0 " da (13)
is an invariant of the motion. Thus, the symmetry property implies a conservation law. The
reverse also holds: every conserved quantity is associated with a symmetry of the dynamical
system.

=0.

o dt

EXAMPLE 4: THE SWINGING SPRING IV. We first illustrate Noether’'s Theorem in two simple cases: invariance
under translation and invariance under rotation. Suppose the Lagrangian is

L=3(@+9*+2%)-V(2)

where the potential energy is independentandy. The Lagrangian is invariant under the horizontal translation
x — z + «a. The quantity\V in (13) is just thez-momentunp, = ma. Clearly, they-momentunp, = my is also a
constant of the motion. Thus, translational invariance corresponds to conservation of linear momentum.
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Consider now invariance under a rotation:

z(a) = +Hzcosa+ysina
yla) = —zxsina+ ycosa
2(a) = =z.

If the Lagrangian is assumed to be unchanged under this transformation, (13) yields the following conserved quan-
tity:
N =m(yt — zy) .

This is, of course, the angular momentum about the vertical. Thus, rotational invariance is associated with conser-
vation of angular momentum.

Now recall from Example 3 that the Hamiltonian for envelope amplitudes of the swinging spring is given by
H = 2iS{A, 4, A5} = (ABC* — A*B*C), where(A;, A, A3) = (A, B,C) and we takep = (A, B,C) and
q = (A*, B*,C*) as canonically conjugate coordinates. The Hamiltonian is unchanged under the following trans-
formations:

1. The phases ofl andC are changed by equal amounts;
2. The phases aB andC are changed by equal amounts;
3. The phases ofl and B are changed by opposite amounts.

By means of the Legendre transformation, it is clear that the Lagrangian has similar properties of symmetry. Consider
the first case, and let — Aexp(ia) andC — Cexp(ia). Using (13), we find that the following quantity is
conserved: 5
_ . O
N = bn Oa la=0
Thus,N; = |A]? + |C|? is a constant of motion. Similarlyy, = | B|? + |C|? is invariant (V; and N, are called the
Manley-Rowe quantities). The sum or thes&Vis= |A|? + | B|? + 2|C|?, which we already noted as an invariant in
Example 3 above. The third symmetry yields constancy of the angular momentum quintity,A|?> — |B|2. We
thus see how constants of the motion may be found by scrutiny of the Hamiltonian, without explicit consideration of
the equations of motion.

= A(—iA") + C(—iC*) = —i(|A2 +|C]?) .

2.5 Casimirs

If the reduction of a Hamiltonian system results in a non-canonical formulation, there are con-
stants of the motion associated with the singular nature of the symplectic operator. In the reduced
phase-space, canonical coordinates do not exist. There are conserved quantities corresponding
to symmetries of the original system which no longer appear explicitly in the reduced Hamilto-
nian. These appear as additional constants of motion d@hsimirs? The reduced Hamiltonian

is determined only up to addition of these Casimir functions. The Casimirs of the problem are
those functions of which Poisson-commute with all other state functions or, equivalently, whose
z-derivatives are in the kernel of.

0C
1] _
J 027 =0

2According to Marsden and Ratiu (1999), H. B. G. Casimir, a student of Paul Ehrenfest, wrote a brilliant thesis on the quantum
mechanics of the rigid body (Casimir, 1931)

{F,C}=0, VF=F(2) or
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They arise due to the singularity of the symplectic operdtbecause, i/ is invertible, its kernel

is trivial. For canonical systems there are no non-constant Casimirs. The number of independent
Casimirs is the co-rank of the operatdr Through Noether’s Theorem, continuous symmetries

of the Hamiltonian are associated with invariants of the motion. Casimirs are also constants of
the motion, sincelC'/dt = {C, H} = 0, but they are determined by the degenerate structure of

J, not by the Hamiltoniand. The dynamics are not altered by addition of an arbitrary linear
combination of the Casimir functions to the Hamiltonian.

EXAMPLE 5: THE SWINGING SPRING V. For the special case where the Hamiltonian takes the value zero, the
system (12) reduces to threzal equations fotX = |A4,|, Y = |Az| andZ = |A;]:

X=-YZ, Y=-ZX, Z=+XY. (14)

If we define the coordinates aé = (X,Y, Z)™ and the Hamiltonian to b& = 1 (X2 4+ Y?2 + 27?), this system
can be written as a non-canonical Hamiltonian system

. OH
i qig 2T
S =
where the symplectic matrix takes the (non-unique) form
- 0 —2kZ —(% - k)Y
J=J"Y = 2k7 0 —(5+k)X | .
E-kY (G+kX 0

Herek is arbitrary; J takes its simplest forms fdt € { — 4,0,+3}. We note thaf.J| = 0, so the system is
non-invertible. In any case, the system is obviously non-canonical, since the order @did. It is straightforward
to show that/ satisfies the Jacobi identity
aJ7*k
ozm
We defineC(k) = 2kH + M where M = X? — Y? is the angular momentum of the spring. Clearly
OC (k)07 = 4((k + )X, (k — 1)V, 2kZ)" and so
. 0C (k)
ij
d 07
Thus,C(k) is a Casimir of the system. Sinéeis arbitrary, we may choose= 0. ThenM = C(0) is a Casimir.

Obviously, so is any functiorf(M). The dynamics are unaffected by additionf@f\/) to the Hamiltonian. Thus,
for example, we may consider

=0.

é.iijzm

H =H+{M=X?+27?%,
to be the Hamiltonian. This is simpler than the original form, sikiceo longer appears in it.
Equations (14) are equivalent to Euler's equations for the rotation of a free rigid body rotating about its center

of gravity (see Lynch, 2002c for discussion). For a generalized Hamiltonian formulation of Euler's equations, see
Shepherd, 1990.

3 Continuous Fluid Systems

3.1 Lagrangian and Eulerian Descriptions

In the Lagrangian description, each fluid particle is assigned a abel, b, ¢). For example,
the labels may be defined in terms of the positions of the particles at the initial time. The label
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of an individual particle is fixed for all time and travels with the flow. The independent variables
are(a, b, ¢, 7), where we denote time by so thatd/dr means thata, b, c) are held fixed. The
dependent variables are the position coordinates

z(a,b,c,7), yla,bye,7), z(a,b,c,T) (15)

of the particles as functions of their labels and the time. We assume this transformation is invert-
ible at every time so thdt, b, ¢) can be obtained in terms of, y, ).

The derivatives im-space anc-space are related by the chain rule
OF _OF 0L 0FDr OF0y  OF0:
or  otor 0Oxor Oyor 0z0r

(0/0t means thatz, y, z) are held constant). But the velocity of a particle is given by the sub-
stantive derivative

(16)

or 0y 0z
v=(wvw)= (87’ or’ 87)
so (16) can be written
OoF OF OF oF oF OF
or ~ o T ar TVay e T TV VA

which is the usual expression for the Lagrangian time derivative, normally writt&idt, fol-
lowing the flow.
It is convenient to assign the particle labels in such a way that

dm = dadbdc = dV,,
wheredm is the mass of an infinitesimal voluna&’, in a-space. But
dm = pdrdydz = pdVy

wheredV, is the volume ink-space. The volume expressions are relatated by the Jacobian of the
transformation (15) so we have

_ 0(a,b,c) _ Oa

T O(r,y,2)  Ox
The specific volume is the inverse of the density,

_ 0(z,y,2) _ Ox

"~ 0(a,b,c)  da’

and the substantive derivative of this leads to
Oa ou Ov Ow
524%+%+E]

(see Salmon, 1998, p. 6). We can rewrite this in a more familiar form

dp
- v=20

so the usual continuity equation results from the assumption that #i>s@wshce volumes have
fixed mass.



Peter Lynch Hamiltonian Methods 11

3.2 Transition from Discrete to Continuous

The momentum equation will be derived from Hamilton’s principle (following Salmon, 1998).
We will deduce the Lagrangian formulation for fluid flow by transition from a discrete to a con-
tinuous system. The Lagrangian for a systeniVadliscrete particles can be written

L(x,,%,) Z mnd)? dxn - V(x) @an

whereV (x) is the potential function. Hamilton’s principle states that the variation

to
5/ L(x,, %) dt
t1

should be zero for arbitrary variations,, that vanish at the end times. This leads to Newton'’s

law
A%
dt 0x,,
By allowing NV to increase without limit and the distances between particles to become arbitrarily
small, we can represent a continuous fluid by a Lagrangian density of the form (17) where now
x andx correspond to the positions and velocities of labeled fluid particles and the indices
represent the particle labels. We repl&cen,, by | dadbde. The kinetic energy becomes

8X 0x

The potential energy comprises the internal endigy- E(«,.S) which is a function of spe-
cific volume o and specific entropy, and the energy due to external forces such as gravity,
represented by a potential functidrix) which is a function of position. Thus

///{E o, S) + ®(x)} dadbde.

Then Hamilton’s principle requires that the action

/ dt{/// {5%.2—’; (%,5) —@(x)} dadbdc} (18)

be stationary for arbitrary variation(a, b, ¢) in the locations of the fluid particles.

(MmnX,) = —

3.3 The Lagrangian Momentum Equation

The variationsix must have no normal components at rigid boundaries and must vanish at the
end times. For adiabatic motion, the entrgpgiepends only oa and not onr. A straightforward
calculation then yields the momentum equation

0*x
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wherep = —9F /da = p?OFE /dp is the pressure (which must vanish at free boundaries). Noting
thatv = 0x/0r is the fluid velocity, we can write the momentum equation in a more familiar

form:
- b =
: —|— Vp—i— V 0.

The Lagrangian density (the mtegrand of (18)) does not depend explicitly on the tifines
symmetry is associated, through Noether’s theorem, with energy conservation

///{58—’( a—X+E+<I>}dadbdc:O.
or 0

There is another, less obvious, symmetry property of (18), corresponding to particle relabeling
which leaves the density and entropy unchanged. The conservation principle associated with this
particle relabeling symmetry is that of potential vorticity

d [Vxv-VS| 0

dt ) -
The patrticle relabeling symmetry is responsible for the existence of a closed Eulerian formulation
of fluid mechanics.

3.4 Functional Derivatives

In discrete mechanical systems the dependent variablase functions of the time. A function
of state is any functiod’(2") whose value is determined once the variablesare specified. Its
variation withz" is given in terms of the partial derivatives:

6F

In fluid dynamics, the dependent variables are functions of space as well as'time;" (x, 7).
We assume that they belong to some function sgac@/e assume also that a real inner product
is defined on this space. Typically, it is a spatial integral over the domain:

(.6) = [[[ Fe6e) da

Instead of functions of state we hafeenctionalsof state, that is functions of functions, mapping
Z to the real line. We will denote functionals by script letters. In place of partial derivatives we
must now considefunctional derivative$.# /62" which are defined by

_ <2w> , (19)
I dzn

for arbitrary functionsv € Z. Writing 62" = ew this implies

5T = F|o" 462" / / / 07 §anda + O((5:)2) (20)

Ly R
dg z EWw
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The variationsjz" are assumed to vanish at the domain boundaries. The functional derivative
d.F /=" is itself a function in the spacg&. To evaluate the functional derivatives &, we
calculate the variation.# arising from arbitrary variation&z", and express it in the form (20).

EXAMPLE 6: FUNCTIONAL DERIVATIVES. To clarify the definition of functional derivatives, we consider three
examples. First, let(x) be a function on the unit intervé), 1] and let

1
Flu] = /0 Flz,u(x),uy(z)] dz.

Then, applying a variatiotiu with §u.(0) = du(1) = 0, we have

Lr7oF d OF
0F = / {6 + :E(S a::| d:z:—/o {(au—dxaux)éu} dzx

where the last expression arises through integration by parts. Thus,

§F OF d OF

Su Ou  dxOu,

As a second example, leF[u] = u(xo) be the functional which evaluatesat z,. We write it in the form
= [d(xz — zo)u(z)dz. Thus we have

0F[u] = /5(1 — z9)du(x)dr = (0(x — xg), du)
which immediately implies
oF
ou
For a final example, let us suppose that the energy of a fluid system can be expressed as

- /// 1% %+ V(x)] da

Sinceda has dimensions of mas$,has dimensionsIL2T 2 of energy, as expected.fandx are varied, we have

55’:/// {)'{~5)'{+av-5x} da,
ox

so the variational derivatives are given by

=d(x — xp) .

66 _ . 86 _av

ox 0 ox ox
Note the dimensionsi&’/dx[=|LT~!. However,6&[=]ML2T~2 anddéx[=]LT 1, so the ratio of these dimensions
is MLT~'. Thus, the functional derivative doast have the dimensions which its symbolic form would suggest.

3This is a serious defect of the notation. However, the convention is now firmly established.
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3.5 The Canonical Equations for a Fluid

Let us suppose that the Lagrangian is given in the form

.,S,”:///L(x,ic)da

Then the variation ok andx leads to

5% = ///{_5“_5}61

or, in terms of variational derivatives,

sz ] {_5 +—5x] da.

Now Hamilton’s principle requires that the actiofi = [ .Zd¢ be stationary:

65’:6/3dt:/{///[—5x+—6x] da}dt:()

Integrating by parts and assumiig vanishes at the end times, we get the Lagrangian equations

for a fluid
di¥ 0&

dt 0% ox
The generalized momentumcorresponding to (3) is

62
ox
By analogy with (4), the Hamiltoniag”’ is defined by the Legendre transformation

# = [[[ wsxda- 2

with x expressed in terms of andu using (21). If we now consider Hamilton’s principle in the

form
5/{///u-3’cda—j€”(x,u)}dt20

for arbitrary variationgyx and du in the positions and velocities of labeled fluid particles, the
canonical equations emerge in the form

' . 0
X=— u=—

ou ’ 0x

p=u= (21)
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3.6 Conserved Quantities, Noether’'s Theorem and Casimir Functionals

To avail of the extraordinary simplicity of the Eulerian description of fluid systems, we are led
to consider generalized Hamiltonian systems with non-canonical form, capable of representing
the Eulerian framework. The simplicity of the Eulerian description is a result of the symmetry
property of the Hamiltonian, which remains unchanged under a re-labeling of the fluid particles
having the same density and entropy. This motivates the transformation to Eulerian variables but,
in the Hamiltonian context, it results in a non-canonical formulation. The transformation is a
projection to a reduced set of variables. In the reduced phase-space, canonical coordinates do not
exist.

For non-canonical systems, there are invariants of the motion arising from two sources. First,
as for canonical systems, symmetries of the Hamiltonian are associated with constants of motion
through Noether’s theorem. Lebe the set of dependent field variablesz4fand.J are invariant
under arbitrary translation of a particular coordinateand.# is a functional satisfying

0=
6z  Ozk’
then.# is a constant of the motiorl.# /dt = 0.

Additional conserved quantities, the Casimirs, appear in the non-canonical formulation. They
are solutions of the equation

(22)

J—=20.
0z

Since this is a homogeneous version of (22), solutions of that equation are determined only up to
addition of a Casimir. Thus, for example, a Casimir may be added to the Hamiltonian without
any effect on the dynamics.

EXAMPLE 7: GUESSING THEHAMILTONIAN FORMULATION As an example of how the Hamiltonian formulation
of a fluid dynamical system may be derived in a heuristic manner, consider non-divergent two-dimensional flow in a
non-rotating coordinate system. The equations of motion are

av 1

— 4+ —Vp=0, V-V=0,

dt — po
whereV = (u,v) is the non-divergent velocityy is the constant density andthe pressure. Assuming a simply-
connected domain with impermeable boundary, the conserved energy is

E://%V-dedy.

The velocity may be expressed in terms of a stream funatipsuch that(u, v) = (—1y,+%3). The vorticity
¢ = V24 is conserved following the flow:
d¢ ¢
S = 23
= o T =0 (23)
whered(a, 8) = a8, — a, B, is the Jacobian.
We now proceed by intuition. Since the vorticity is a fundamental conserved quantity, we choose it as the
Hamiltonian variablez = {. The Hamiltonian is guessed to be the energy, written

H = // iVY-Vip dzdy .
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Then the variational derivative o is easily calculated:

0 = // V-V dedy = }I{wv&/)-nds —/ V259 dady = //(—w)ézda:dy,

so thaty 7’ /§z = —1 (we have taken the arbitrary constant boundary valugtofbe zero). We know, = 9(z, ¢),
so we can write (23) in generalized Hamiltonian form

0z 0
s e4)
where the symplectic operator is given ByF) = —0(z, F'). We may alternatively write the system in terms of a

Poisson bracket: 0 57 s

The Casimirs of the system are the solutions of
0¢ 06

Clearly, J(z) = 0 and indeed any functiofi(z) is annihilated byJ. Thus,

O r o 0= [f [ s

so that the Casimirs of the system are just integrals of arbitrary functions of the vorticity.

To conclude that (24) is in generalized Hamiltonian form, it is necessary to prove that the symplectic aperator
has the required properties. Obviously, it is skew-symmetric in its arguments. The proof that it satisfies the Jacobi
identity requires more algebra, which we omit (see, e.g., Swaters (2000) for details).

4 Reduction from Lagrangian to Eulerian Form

Normally, the Lagrangian (i.e., particle-following) representation of fluid systems leads to a
canonical Hamiltonian formulation. This is generally not the case for the Eulerian formulation.
One may well wonder how the non-canonical formulation of a general Eulerian fluid-dynamical
system may be found. A number of specific formulations have been arrived at by inspired guess-
work. However, this is not a satisfactory method in general, Moreover, it requires an explicit
demonstration that the posited symplectic operator has the appropriate algebraic properties. The
proof that a givern/ or Poisson bracket satisfies the Jacobi identity can be challenging.

A more satisfactory way of deducing the Hamiltonian formulation of an Eulerian representa-
tion is by reduction of the (canonical) Lagrangian formulation. This has at least three advantages.
It allows us to proceed in a logical and deductive fashion, which is more appealing that guess-
work. It ensures that the algebraic properties of the Lagrangian formulation carry over to the
Eulerian representation. It elucidates the origin of the Casimir functions, which are absent in the
canonical formulation. These functions arise through symmetries in the Lagrangian form arising
from the particle-relabeling symmetry, which is hidden in the Eulerian framework.

In the Lagrangian formulation, the state of a fluid system is specified by means of the position
X(a,m) and velocityu(a,r) of every fluid particle, as functions of the time The particles are
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labeled by coordinates, the label of each particle remaining unchanged. Thus, the state of the
system at any time is determined by the six Lagrangian fields

{x(a),u(a)}.

In the Eulerian formulation, the required fields are the velocity, density and entropy given as

functions of position:
{u(x), p(x),5(x)}. (25)

These are determined uniquely from the Lagrangian fields. However, as there are only five Eule-
rian fields, they may be represented as points in a reduced phase-space.

For two arbitrary functionals of the Lagrangian state of the fluii(x(a), u(a)) and
¢ (x(a),u(a)), the Poisson bracket is defined by

o= ff {  Fate 6ii>'6i<i>}da (20)

If we consider an arbitrary transformation to new independent varigbbsd new dependent
variablesv;(y), the bracket may be expressed as

9y = [ [[{ oot vtah s . @)

where{v;(y1), v;(y2)},, is calculated using (26).

ExAMPLE 8: THE CHAIN RULE. First, consider a finite-dimensional system, and consider a coordinate transfor-
mationZ® = Z¢(z). The symplectic operator in terms of the new variables is
ozt ., 077
ozm oz"

(28)

Itis a second order contravariant tensor.

There is a formal similarity between (28) and (27). The latter is the generalization to continuous fields of the
discrete transformation. We consider a change from Lagrangian independent varitibleslerian variablex(a)
and of dependent Lagrangian fields = {x(a),u(a)} to Eulerian fieldsv, = {u(x), p(x),S(x)}. Then the
variational derivative of an arbitrary functiongd with respect to the old variables is given in terms of the new ones

by
// 0F §vk
(5ul 5vk 5ul
This is the chain rule for variational derivatives. If it is applied to the Poisson bracket (26), the transformation rule
(27) results.

If the functionals# and¥ depend orx(a) andu(a) only through the Eulerian fields (25), we
can use (27) to derive a Poisson bracket in terms of the Eulerian fields. The algebra is formidable
and we just present the result here; see Morrison and Greene (1980) for the lengthy calculations.
The Eulerian bracket is

e[l [Hvaw s
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+ v X u. % X g
p dju Jdu
VS [(6F 64 646
[7' (EE B EE)] }d" (29)

A more general formulation, applicable to magnetohydrodynamics, and a hierarchy of simplifi-
cations of it, are discussed in Morrison (1982).
This Poisson bracket provides a Hamiltonian formulation in terms of the Eulerian variables
(25). The evolution of the system is given by
d.F

& g

where the Hamiltonian is

H = ///p{%u-u—l—E(p‘l,S) + O} dx.
The bracket (29) inherits crucial properties from its Lagrangian forbear (26). Itis skew-symmetric
and satisfies the Jacobi identity. However, it is singular. If we define the potential vorticity by
Vxu-VS
4= ——"""":
P
it can be shown that for any functiorfél(¢) one has

(Z.€}, =0

for all functionals.#. The singular nature of the Poisson bracket is a consequence of the projec-
tive nature of the transformation from Lagrangian to Eulerian coordinates.

ExAMPLE 9: A SIMPLE REDUCTION. To illustrate the algebraic process of reduction of the Poisson bracket in

a simple case, we consider the one-dimensional, non-rotating shallow water equations. Assume an incompressible
fluid of densityp; without loss of generality, we may spt= 1. The Lagrangian coordinates &i® b, c) but, as

there is ngy-dependence, is constant and is ignored. The position and velocity:dre ¢, 7) andi(a, ¢, 7), but we

assume material columns remain vertical so that z(a, 7), ¢ = #(a, 7). Labels are assigned so that

da = hdx (30)

whereh(a, 1) is the depth. A mass element is given &y, = dadc = dxdz which impliesdz = hdc or, after
vertical integration, that varies from zero at = 0 to unity atz = h. Differentiation of (30) yields the continuity

equation
or ox

Z = //[%.732 — gz]dadc = / 3% — ghlda

and the resulting Euler-Lagrange equation is

oi | on_
or gaxi

=0.

The Lagrangian is given by

0.
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The generalized momentumps= §.¢ /6 = & = u, and the Hamiltonian is

%:/%[uz—kgh]da.

whereh = h(z) is shorthand forla/dz.

The Lagrangian independent variables @a@nd+ and the dependent fields ate= z(a, 7) andu = u(a, 1),
which are canonical coordinates. The Eulerian independent variables amd ¢ and the dependent fields are
u = u(z,t) andh = h(z,t). The canonical Poisson bracket is defined by (26):

0F 09 0F 09
F = . - . da .
{79}, /{536(@) du(a)  du(a) 533((1)} “
To apply (27), we need to evaluate the fundamental brackets su¢h(as), u(z2)}1,, and this in turn requires

knowledge ofju(z1)/0x(a) and other similar variational derivatives. We must express ) andh(z;) as func-
tionals ofz(a) andu(a). We write

u(zy) = /u(a)é(a —a1)da,
wherea; is the label corresponding ta . Thus

du(xy) . _
dx(a) 0 d du(a)

Similarly, expressing(z1) as

we find that Sh(z)) 0 Sh(z)
) O _ Z1
ox(a) 8x6(x 1) and ou(a)

These expressions enable us to evaluate the fundamental brackets, giving

=0.

{u(zr),w(za) . =0, {h(z1), h(z2)} =0, {u(z1), h(z2)}r = *6%15(:61 —22).

Then the Eulerian bracket is given by

09 0F

(7.9}, //{ (uen) o)}y s + s (b <x2)}LM‘Szz)}dxldx2,

and, after insertion of the expressions for the Lagrangian brackets on the right, we arrive at
0 (6F\ 69 o6F 0 (69
= o )5 o (i) oo 5D
The Hamiltonian in the Eulerian framework is
H = / 2 + gh)hdx

which implies the functional derivativeéls?’/ou = hu andd.# /6h = u
us to identify the symplectic operatdrthrough the relationshig.7, ¢}
assuming periodic boundary conditions, we see that

J= (O& _§x> . (32)

2 + gh. The Poisson bracket (31) enables
= (%,J¥). After integration by parts,
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Definingz = (u, h)", the generalized Hamiltonian system of equations

0z 09

then yields the usual Eulerian form of the equations of motion:

ou 0 4 , B oh 0 B
The Eulerian Poisson bracket (31) automatically satisfies the Jacobi identity, as it is derived from the canonical form

by means of a covariant transformation

5 Shallow Water Equations

We consider the motion of a shallow layer of incompressible fluid above a flat surface in a rotating
coordinate system. The height of the free surfack. idt is dynamically consistent to assume
material columns remain vertical, and that each vertical column is identified by two Lagrangian
labels,a andb. Then the position of a column is

r=xz(a,b, 1), y=1y(a,b,T).
We require these labels to be assigned in such a way that

_ 0O(a,b)
"oy 59

Then the third, or vertical, labelmust be chosen so that

_ 9a,b,e)  9(a,b) Oc _ Oc
M= Ay, 2) Ay de 0z

(35)

This can be integrated immediately to give

he
z=—,
Po

so thatc varies from zero at = 0 to p, at the free surface. The continuity equation follows

through differentiation of (34):

O v v =0, (36)
or

wherev = (u,v) = (0z/0T,0y/0T).

ExAMPLE 10: ROTATING COORDINATES. A particle in a potential field”(X) has Lagrangian

L=1X.-X-V(X).

-2
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Let x be the coordinates in a frame rotating with constant angular vel6kitfror simplicity, we assume that the
potential energy is unaffected by rotation, so thidk) = V(X). The velocities in the two frames are related by
X = x+ Q x x, so the Lagrangian in the rotating frame is

L=1%%+Qxx %+ 3(Qxx)?-V(x). (37)

Using (2), the equations of motion may be written immediately:

X+20 xx+Q x (2 xx) g—V:O. (38)
X
Here we have used the vector idenfity x B) - (Cx D) =(A-C)(B-D) — (A -D)(B - C), which leads to
g[%(ﬂ xx) ] =0%x - (- x)Q=-02x (2 xx).
X

The second term in (38) is the Coriolis term. The third term is the centrifugal force, which is often combined with
V to give an effective potential; we assume this done.
The Hamiltonian is defined by introducing the generalized momentum

OL
P=—-—=%X+Qxx.
ox
We note thatp is not the usual momentum in the rotating frame, but the absolute momentum. The Legendre
transformation now yields

H=p-x—L=1%%x+V(x).

Mirabile visy, the rotatiorf2 appears to have disappeared. But no! We must expfessa function of the canonical
variablesp andx:
H:%(p—ﬂxx)-(p—ﬂxx)—l—V(x) (39)

so its dependence on rotation is now explicit. The canonical equations (5) nowkyield H/0p, together with
(38).

5.1 Lagrangian Equations in a Rotating Frame

To allow for the Coriolis effect, it is necessary to include additional terms in the Lagrangian. We
introduce the notionalorld-wind, W, which is the velocity, measured in an absolute frame, of
an atmosphere in solid rotation with the earth:

W = (U,V,0) = Q x x.

On the sphere, the world-wind is, in geographic coordinafés: ({a cos ¢, 0, 0). It has vortic-
ity equal to the planetary vorticity:

1 ov. 0

acos ¢ a_a_gb(U'COSQS) =2Qsing = f.

k- VW=

For anf-plane, withQ? = Qk, we haveW = (—Qy, Qz,0). In any case, the relative and absolute
vorticity are given by

(=k-Vxv and (+f=k Vx(v+W).
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The total energy of the fluid is given, in Lagrangian variables, by

ox 0x 8X 1 ox
/// [QEE 8_+ W . W+E(8a S>+(I>(X)] dadbdc . (40)

The gravitational potential i® = gz. For incompressible, adiabatic flow, the internal energy
E(a, S) may be omitted, as it is unaffected by variations in the positibnand plays no role
in the dynamics. The constant density is given by (35). We neglect the small term in the kinetic
energy involving the vertical velocity. The vertical integration may be carried out explicitly,
yielding

://%po{%-%+2W-§—j+W-W+gh}dadb. (41)
For simplicity, and without loss of generality, we will assupge= 1. In the Lagrangian frame-
work, the variableh is defined by (34). The Lagrangian, required to derive the equations from
the least action principle, is

¢ = // 0x 0% L ow. 9% L w.w — gh\ daan. (42)
ar or or
Applying the least action principle, we arrive at the equations of motion
0*x ox
—+QQ><—+Q><(Q><X)+th:0. (43)
or? or

Here, the spatial variation &V has been carefully allowed for, and we have used the following
relationship, which is proved without difficulty:

//Féhdadb—/ %VFhQ-éxdadb (44)

(Salmon (1998), p. 317). In theeaditional approximation only the vertical component d
is retained in the Coriolis term. Then (43), together with the continuity equation (36), may be
written

0w Jy oh

-2 - — 4

o2 or T T 0 (45)

0%y ox oh

- P 4
or2 +f87' +g§y 0 (46)
%%—hv-v:o. 47
or

(Since the centrifugal term depends only on position, it has been absorbed in the gravitational
potential by adjusting the value gf. This is the shallow water system of equations in Lagrangian
form.
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5.2 Hamiltonian Form of the Equations
The generalized momentum is defined as

oL
u= =x+W.
5%

Thus,p is the absolute momentum. The Hamiltonian is now obtained via the Legendre transfor-

mation
%”://u'}'cdadb—f://%[}'{~X—W~W—|—gh]dadb,

This must be expressed in terms of the canonical variabbrsdx:

p

j‘f:// [%u-u—u-W—l—%gh} dadb ,
so that the world-wind appears explicitly i#’. Taking a variation of this we get
SH = / / [(u ~W)-0u + Q x udx + th-éx} dadb .

Thus, the variational derivatives g#” may be obtained:

&%ﬂ—ﬂxu—i-th 5%—u W. (48)
0x ou

Definingz = (x,u)", the equations of motion may be written as

0z 07
o =5
where the symplectic operatdris in the canonical form (9). The Poisson bracket also takes the
canonical form 57 5
F
. . 4
{7.9h = // { 5u ~ bu(a) ox(a) } da (49)

5.3 Eulerian Form of the Equations

We could derive the Eulerian form of the Poisson bracket by transformation of (49), following
the method of Example 9, but will deduce it by more intuitive reasoning (this section borrows
heavily from Shepherd, 1990). The Eulerian independent variables are(z, y) and timet.

The dependent variables ave= (u,v) andh, and we will explore whether = (u,v, h)T are
suitable coordinates. We wijuesghat an appropriate form for the Hamiltonian is

H = // %h{v~v—|—gh} drdy . (50)
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The factorh comes from the transformatiofy )dadb = [( )hdzdy. We consider the variation
of 2 resulting from variations of the variablesandh, and find that

oh 2 g v

If the advection is transformed using the vector identity

hv.

V-VV:V%V'V—l—CkXV
where( = k - V x v is the vorticity, the equations (45) to (47) can be written

ou

0
E = +(C+f)v—%(%v-v+gh)
0 0
oh 0 0
o~ an gy

(once again, the centrifugal term is absorbeg)inDefining the potential vorticity

:k-va—l—f:C—i—f

q

h h
the system may be written in generalized Hamiltonian form
0z 07
= == 1
ot J 0z (51)
wherez = (u,v, h)T and the symplectic operatdris given by
0 qg —0,
J= - 0 =09,]. (52)
-0, —0, O

A Poisson bracket is associated wittthrough the relationship.#, ¢} = (%, J¥). Although
the matrix operatot/ in (52) is not skew-symmetric, the appropriate symmetry of the Poisson
bracket appears after integrations by parts. The bracket may be written

0F 09 0F\ 09  OF 9
J‘ p— . —_— —_— - —_— —_— - —_—
{J,g}—//{qk (5V X (5V) —l—(V 5V> 5 oh (V 5V>}dxdy (53)

which is clearly a skew-symmetric bilinear operator. It can be shown that this Poisson bracket
satisfies the Jacobi identity.
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6 Balanced Equations

One of the attractions of the Hamiltonian formalism is that it guarantees that conservation prop-
erties of an exact system are maintained in approximations thereto if appropriate symmetries of
the exact system are preserved in the approximation process. Thus, the time-invariance of the
approximate Hamiltonian will ensure an appropriate energy principle, and the particle-relabeling
symmetry will mean that potential energy for the approximate system is conserved. The Hamil-
tonian perspective can also serve as a guide to the choice of new dependent and independent
variables in which the approximate equations take their simplest form.

6.1 Non-divergence Constraint in Lagrange Variables

As a simple example of further approximation to the shallow water equations, we impose a con-
straint that the horizontal flow be non-divergent:

V-x=0.

This constraint is imposed through the procedure of incorporating an additional term with La-
grange multiplier in the integrand in Hamilton’s Principle. We require that the variation of the
action, modified by the constraint, be stationary:

5/{$+/ )\(V-)'c)dadb}deo

whereX = A(a,b, 7) is the Lagrange multiplier, to be found, ad is the Lagrangian of the
shallow water equations, given by (42). The variatiors(taken for fixed particle labels and
times) are arbitrary but vanish at the end times and the domain boundaries. The solution for
unconstrained motion was derived§B.1 and is given by (43). Additional terms arise through

the constraint:

5/47{/ )\(V~k)dadb} _ /dT {/ (V- %)5A + A(V - 6%)] dadb} |

The vanishing of the coefficient of\ ensures that the constraint is satisfied at all locations and
all times. The second term is, after some manipulation,

/dr {/ AV - (5>'<)dadb} = /dT {// [EEV (hA) ] -5Xdadb}

so that (43) is augmented by an additional term:

i+2§2 é)—+Q><(Q><x)+ Vh+1£V(h)\) 0 (54)
or? or IV R or |
The continuity equation (36) reduces in this case to the consistency condition
oh

— =0.
or
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This is physically reasonable: an individual fluid column cannot vary in height as, without any
influx or outflow, there is no mechanism for supplying or removing fluid. Thus, flow must be
along contours of constant height
How do we calculate? The momentum equation may be written

LG+ 20 xut gV = 0. (55)

dth dt gVaE=
whereu = dx/dt and the centrifugal term is included in We take the divergence of this and
use the fact tha¥’ - u = 0 to obtain a prognostic equation far We note the relationship, valid

for any vector:
dC d

o
Defining the modified gradient and Laplacian operators

V-C) + (V-C)2 = 2J(C}, Ch) .

- 1 - -
VA= EV(hA) and V2A=V-V)\
and using the above relationship, the following equatiom\fogsults:

%(ﬁ?x) + (V2N)2 = 2J((VN)1, (VA)g) = — |gV2h + fC — Bu—2J(u,v)] .

This can be used as a predictive equation ¥8t\, after which A may be extracted through
solution of an elliptic equation.
6.2 Salmon’s L-1 System

Salmon (1983) derived a filtered system of equations by introducing approximations directly into
the Lagrangian and then applying Hamilton’s principle. Our starting point is the Lagrangian
function (42) in Lagrange variables (with the centrifugal term absorbed in the gravitational po-

tential: o 5 o
. 1 X X ox
.,2”—//2{87 57 VVa gh} dadb .

As an initial simplification, we omit the first term entirely and consider the approximate La-

grangian @)
0= // {W__% (:v:y)} dodb-

Variations in the patrticle locations yield the geostrophic relationships for wind in terms of geopo-
tential height. Since mass conservation is unaffected, the following set of equations obtains:
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This level of approximation is too drastic for most purposes. We refine it by substituting the
geostrophic expression selectively in the Lagrangian, to obtain

L = // {ug—+2wg——gh}dadb. (56)

Variations of the particle locations now yield the equation

d
%ﬂlg VuA+fk><u+th——EVB (57)

where the quantitys is defined by
B="10% -V x (us/f) + 2hus x V(1/f)] 'k

whereu, = u — ug is the ageostrophic wind. This equation contains the exact Coriolis and
pressure gradient terms, but the advectiaridt is approximated by neglecting the local rate of
change of the ageostrophic windu, /0t, and the termu, - Vu,. The former omission has
the effect of filtering out gravity wave solutions from the system. The continuity equation is
unchanged in form.

The conservation laws for this ‘L-1 system’ follow directly from those of the unapproximated
system. The conserved energy quantity is

/ L2 + & + gh} dadb
and the geostrophic potential vorticity
81)(; 8uG
(-5 ))
is constant for each fluid particle.

6.3 Hamilton’s Principle in Euler Variables

The variational derivation of Eulerian equations is more difficult. We follow the method of Holm
(1996). The action is minimized under variations of particle labeits(a, b) at constant Eulerian
positionx and timet. The Lagrangian is given by

.L”E://{%h(u~u+2w-u—gh)} dxdy . (58)

Hamilton’s principle requires that the variation of the actiofi.Zrdt vanish. In terms of varia-
tions of the Euler variables, this is

/dt//d:cdy{h(quW)-5u+§(u-u+2u.vv—gh)5h}.
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To proceed, we require expressionsfarandjh in terms of the label variations: anddb. Since
the labelsa = (a, b) = a“ are constant following the motion, we have
da®  Oa® da® da®

e :aa ]aa:O
it ot Mor TV, T tuda =0,

whered;, = 0/0t and (0y,0,) = (0/0x,0/0y). Thus, the Eulerian velocities and labels are
related by ' ' '
O = —(J)fu’ and ' =—(J " 0"

(2

where the matrix7 and its inverse are given by

_ [ Gz Gy -1 _ l by —ay
j_(bx by) and J _h<—bx a, )
Note that the determinant Qf is h. It then follows that the variations ai and A may be
expressed in terms of label variations:

ou' = —(J L (0da” + u;0;0a%) and Sh = h(J 1), 0;0a". (59)

By means of these relationships, it is possible to express the variation of action purely in terms of
variations of the particle labels. However, considerable algebraic manipulation is required. The
following relationships are easily proved:

(T =T 0 and (AT 1)) = 0. (60)

By means of these, using the appropriate boundary conditions after partial integrations, and em-
ploying the continuity equation, the integrand of the action may be written eventually as

[ du? A . ,
{h(j_l); |: dl:f + u]((?jW’ — @Z—WJ) + g@zh} } da”® .
Since the label variations are arbitrary, the quantity in square brackets has to vanish at all points
and times. We note that ' ' ‘

W (W' — ;W) = f(k x u);

so that, finally, the usual form of the momentum equation is obtained:

d
d—lt‘+f(k><u)+gvzz:o. (61)
This is now seen as the consequence of Hamilton’s principle for the shallow water system in

Eulerian variables.
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6.4 Balanced Eulerian Systems

We will describe a simple balanced system derived by Allen and Holm (1996) and discuss various
ways in which it can be generalized. The Lagrangian (58) may be written

D%E://{h(W—l—u)'u—%ghQ—%hu-u} dxdy . (62)

We assume the Rossby numbers small and partition the wind field into geostrophic and
ageostrophic componentst = ug + eu,. Keeping terms up t@(e¢), the Lagrangian may
be written

Lk = / {h(W +ug) -u—1gh? — 1h(uc -ug)} dedy. (63)

Then, following arguments similar to those in the preceding section, Hamilton’s principle (with
variations of Lagrangian labels at constant Eulerian positions and time) results in the following
system:

%+[Vx(w+ug)]xu+v3:o
oh
E—FV-hU—O

where the Bernoulli functio® is defined as
B=|gh+iuc-ug+ (1/F)k-V x [h(u—ug)]] ,

where.# is the Froude number. This system is closely related to Salmon’s L-1 system, derived
using Hamilton’s principle in Lagrange variables (with variations in particle paths at fixed time
and Lagrangian labels).

A similar system may be derived much more simply by replaaingy ug as the variable
operated on by//dt in the momentum equation (61). This was the approach adopted by Eliassen
(1948) to derive the system known as the geostrophic momentum approximation. This system
is equivalent to orde®(e¢) with the one obtained here. However, such a cavalier approach has
its pitfalls: the system derived through Hamilton’s principle conserves total energy and poten-
tial vorticity of fluid parcels, whereas there is no guarantee that the system derivaadilyc
methods respects these principles. The additional terms of O@éy which are retained in ths
Hamiltonian approach are precisely those needed for energy and potential vorticity conservation.

Allen and Holm (1996) show that more accurate systems may be derived by retaining terms of
higher order in the Rossby number. Holm (1996) presents a baroclinic system which he calls the
Hamiltonian balance equations (HBE). Finally, Holm, Marsden and Ratiu (2002) present a hierar-
chy of equation systems based on successively stronger approximations to the Lagrangian. Start-
ing with the Euler equations for three-dimensional flow, incompressibility is enforced through
a constraint in which the Lagrange multiplier turns out to be the pressure. When the buoyancy
is constrained to be small, the Euler-Boussinesq system is obtained. The hydrostatic primitive
equations follow upon assuming that the aspect ratio is small. Expansion in the Rossby number
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then leads to a sequence of balanced systems, HBE, Salmon’s L-1 system and the classical quasi-
geostrophic equations. At all stages, the Hamiltonian formalism ensures that appropriate energy
and potential vorticity principles apply, This is so because the approximations do not disrupt the
symmetry properties of the Hamiltonian.

7  Summary

The powerful methods of Hamiltonian mechanics have significant benefits when applied to geo-
physical fluid dynamics problems. The methods have been introduced first in the context of
finite-dimensional mechanical systems, with illustration of several key ideas through application
to the elastic pendulum or swinging spring. The Lagrangian formulation of the fluid dynami-
cal equations has been presented, and compared to the more familiar Eulerian formulation. The
process of reduction from Lagrangian to Eulerian formulation has been described. The rotating
shallow water equations have been taken as a simple example of a geophysical equation system,
and various Hamiltonian forms of the equations have been presented. Finally, the passage from
‘exact’ to ‘approximate’ equations, through application of constraints with Lagrange multipliers,

or by other means, has been described, and a number of balanced systems resulting from the
process have been presented.

The methods developed in this brief introduction are of very general applicability. There is a
wide range of possibilities for deriving approximate systems of equations with varying levels of
accuracy. One particular sequence of filtered equations was proposed long ago by Hinkelmann
(1969). He proposed a general method for defining initial data for the primitive equations. He
argued that the observed mass and wind fields should be adjusted so that

d™(V-V) d"H(V - V)

T 0 and T 0. (2.2)
That is, these two conditions should be used to derive diagnostic relationships which the initial
data are then required to satisfy. As an alternative, he pointed out that the two conditions could be
used to replace two prognostic equations by diagnostic relationships, yielding a general filtered
system. The case = 0 yields the quasi-geostrophic equations, while the case 1 leads
to the slow equations (Lynch, 1989). It is proposed, in a future investigation, to implement the
Hinkelmann hierarchy using the Hamiltonian formalism.
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