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ABSTRACT

A number of initialization schemes based on recursive filters are formulated
and tested with a numerical weather prediction model, HIRLAM. These
have an advantage over schemes which use nonrecursive filters in that they
derive the initialized values from a diabatic trajectory passing through the
original analysis. The changes to the analysed fields are comparable in
size to typical observational errors. A non-recursive implementation of the
recursive filters makes the new initialization schemes as easy to use as the
original non-recursive filter schemes. It also allows use of higher order filters
without added cost. An initialization method using a sixth-order filter is
compared to a scheme based on an non-recursive optimal filter, and is found
to produce similar results for less than half the computational cost. If the
sole aim is noise suppression, a filter whose output validates later than the
initial time may be used. The advantage of this is that computation time
is further reduced and phase error completely eliminated.
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4 Recursive Filters

1. Introduction

Analysed data to be used as initial conditions for a numerical forecast
must be adjusted to remove spuriously large gravity wave components.
There are several reasons for this initialization: it enables us to generate
realistic patterns of divergence, vertical velocity and other diagnostic fields;
it eliminates high frequency noise which otherwise corrupts short-range
forecasts; it facilitates the quality control and assimilation of observational
data; it leads to more realistic precipitation patterns in the early hours
of the forecast; finally, in the absence of initialization, excessive gravity
wave activity can induce numerical instabilities, necessitating the use of a
shorter time step.

Initialization of data for a limited area model has been successfully
performed by application of a simple filter to time-series of dependent
variables produced by the forecast model. In Lynch and Huang (1992)
short-range forward and backward adiabatic integrations were carried out
to produce sequences of values centered at the analysis time. When these
were used as input to a filter, the output was found to yield a noise-free
integration. To allow for irreversible effects, Huang and Lynch (1993)
followed a short backward adiabatic integration by a diabatic forecast of
twice the duration to produce diabatic trajectories centered at the analysis
time. The values yielded by this forecast were input to the filter and
resulted in diabatically initialized fields.

The forward diabatic integration will not normally coincide at time
t = 0 with the original analysis. Ideally, the diabatic trajectory passing
through the analysis point at the initial time should be used. We can
generate this trajectory for positive time by integrating the model; but for
negative time, irreversibility of the diabatic processes makes it difficult to
calculate. In the present paper a method of filtering a forward trajectory
to generate initialized fields is considered. This is achieved by means of a
recursive filter.

Straightforward application of a second-order filter to a one-sided tra-
jectory produces initialized fields which yield a noise-free integration, but
causes a phase-shift so that the analysis and forecast changes are large.
A number of alternative formulations of the scheme are discussed and
shown to be satisfactory when compared with the method of Huang and
Lynch (1993). By implementing a recursive filter in a non-recursive way,
no penalty in computer time or storage is incurred when a higher order
filter is used. It is shown that straightforward application of a sixth-order
filter to a 1.5 hour forecast produces initialized fields acceptably close to
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the analysis and eliminates high frequency oscillations while having mini-
mal impact on a 24 hour forecast. This scheme uses less than 50% of the
computation required by that of Huang and Lynch (1993).

Filter output valid at a time later than £ = 0 may be produced by using
a filter whose delay is much shorter than its span. An integration may then
be continued from this point, the original fields having been replaced by the
filtered ones. The subsequent forecast is noise-free at significantly reduced
cost in computation time.

2. Theory of Recursive Digital Filters

General accounts of digital filters are available in publications on digital
signal processing, for example Oppenheim and Schafer (1989). Kulhanek
(1976) reviews them from the standpoint of geophysics. For a recent dis-
cussion of the filters of interest in the present paper, see Lynch (1993a).

2.1 Definition of Digital Filters

Given a discrete function of time {z, } a nonrecursive digital filter is defined

by
N

Yn = Z ApTp—k- (1)
k=—N

The output y, at time nAt depends on both past and future values of z,,
but not on other output values. A recursive digital filter of order N is

defined by

N N
Yn = Z AxTp—k + Z bkyn—k- (2)
k=0 k=1

The output y, at time nAt in this case depends on past and present values
of the input and also on previous output values. Recursive filters are more
powerful than non-recursive ones, but can also be more problematical, as
the feedback of the output can give rise to instability. The response of a
nonrecursive filter to an impulse at n = 0 vanishes for |n| > N, giving rise
to the alternative name finite impulse response or FIR filter. Recursive
filters have longer memories: since the response of a recursive filter to an
impulse input can persist indefinitely, it is known as an infinite tmpulse
response or IIR filter.

The frequency response of a digital filter is easily found: let z, =
exp(inf), where 6 is the digital frequency, and assume an output of the
form y,, = H(0)z,; substituting into (2), the transfer function H () is

iko

Eszo age
H(0) = —
( ) 1 — Eé\le bke—zkﬂ

(3)
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For nonrecursive filters the denominator reduces to unity. Defining z =
exp(if), it can be shown that a recursive filter is stable if the roots of the
characteristic polynomaial

N
NS N =0
k=1
are inside the unit circle |z| < 1.

The output of the nonrecursive filter (1) for an input z, = 2" is of
the form y, = Hz", where H is a polynomial in z (multiplied by z=).
There are several design techniques for choosing the coefficients {a,} (see
Huang and Lynch, 1993, Appendix A, for two methods). The design of
recursive filters is more complicated. The response function H is a rational
function of z. The effectiveness of such filters is influenced not only by the
forced response, but also by transient components whose rate of decay
determines when a steady state response is reached. The recursive filter
(2) can be regarded as a difference equation of order N. The general
solution comprises two distinct parts, a component which is a solution of
the homogeneous equation and a forced component due to the input. If the
filter is stable the former component decays exponentially with increasing
n and is called the transient response. The rate of decay depends on the
distance of the poles z, of H from the unit circle, that is on |zp|. Therefore,
ceteris paribus, we should arrange for the poles to have the smallest possible
moduli; this is the idea which is used to devise the Quick-Start filter (see
Appendix A).

2.2 Design of Recursive Filters

In the simplest design method for recursive filters, a classical analog low-
pass response is specified; a transformation of variables then converts this
to discrete time in such a way that the required filter coefficients may be
deduced. There are numerous classical filter functions which may be used
as a basis for digital filter design. They are determined by the manner in
which the ideal lowpass filter response is approximated in the pass- and
stop-bands. It is important to choose the type of filter appropriate to the
problem. All the classical types are optimal in one sense or another: for ex-
ample, the Butterworth filter has an amplitude response which is as flat as
possible at the low-frequency limit; the Bessel filter has a group delay that
is as near constant as possible for a given filter order. In Appendix A we
derive an expression for the N-pole filter whose transient solution decays
most rapidly. It has all its poles on the negative real axis, at s, = —o:

O'N

M= o
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(s is the complex frequency, the parameter appearing in the Laplace trans-
form). The prototype version (w. = 1) corresponds to the value o =
V1/(21/N —1). This is what we propose to call the N-th-order Quick-
Start filter.

There are several methods of deriving a digital transfer function from
an analog response function. They all involve some mapping from the
s-plane to the z-plane, chosen to preserve properties such as optimality
of the filter. We will discuss only the bilinear transformation (for some
alternatives see Lynch, 1993a). The theory behind this procedure can be
found in the literature on digital signal processing. The bilinear transform
is a mapping from the s-plane to the z-plane, given by

1 rz-1
— lz +1

He )

where u. = tan(f./2) with 6, = w.At = 2nAt/7, defining the cutoff fre-
quency. Under this transformation the imaginary axis s = iw of the s-plane
maps into the unit circle z = exp(¢6) in the z-plane

_ tan(0/2)
Y tan(6./2)

in such a way that w = 1, the cutoff frequency of the prototype analog filter,
corresponds to 6, (this is the reason for the factor u. in (4)). Conversion
from a prototype analog filter to a digital filter with cutoff frequency 6,
is implemented by the substitution of (4) into the transfer function H(s)
to obtain a function of z. The coefficients are deduced by comparing the
result with the general expression (2).

The above may be made clearer by an example. The second-order
prototype Quick-Start filter, normalized so that H(0) = 1, has a response

function )

s
H(s)= —"—+ 5
0= ot 6
where s, = (—y/+v/2 + 1,0). Under the bilinear transformation this becomes
1 2
H(z) = GM (6)
(z — 2)?

where G = (sppe/(1 — sppe))? and z, is the image of s,. This response
function corresponds to a filter of the form

Yn+1 = (anTH—l + a1y, + a2, ) + (blyn + b2yn—1 )
and by comparing (6) with (3) the coefficients can be read off:

ag = %al = Qa9 = G bl = 2Zp bg = _2129'
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Graphs of the amplitude and phase response of several filters designed
using the bilinear transform may be found in Lynch (1993a).
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3. Application to Initialization

The nonrecursive filters employed by Lynch and Huang (1992) and Huang
and Lynch (1993) have linear phase-error and produce output which is
valid at the centre of the span; thus, such filters applied to a forward inte-
gration yield data applicable at half the span. Recursive filters (IIR filters)
have more complex phase-errors. Their use in initialization depends upon
a simple idea: if a filter with a group delay 0 is applied for an integra-
tion over a time-span Ts = 0§, the output at t = Ts; may be assumed to
apply at the initial ttme t = 0. This is what is required for initialization.
Evidence in support of this idea is given in §3.3 below. An application
of a recursive filter to initialization of a barotropic model is described in
Lynch (1993b). Application to the HIRLAM model will be presented in
the following sections.

3.1. HIRLAM Model

The HIRLAM model (HIRLAM: High Resolution Limited Area Model)
is the forecast component of a comprehensive numerical weather system,
which is under continuous development in a joint Nordic-Dutch-Irish re-

search project and is operationally used in Denmark, Finland, the Nether-
lands and Sweden. The model is documented in Kallberg (1989).

The HIRLAM model is a primitive equation model with horizontal
wind (u, v), temperature (7'), specific humidity (¢) and surface pressure
(ps) as prognostic variables. The dependent variables are staggered on
the Arakawa C-grid. The model has a rotated latitude/longitute grid, a
hybrid sigma-pressure vertical coordinate, a second-order accuracy finite
difference scheme, and a leapfrog semi-implicit scheme with Asselin time-
filtering. The model physics includes a radiation scheme, a Kuo-type con-
vection scheme, a stratiform condensation scheme, the ECMWF surface
parameterization scheme, and a vertical diffusion scheme.

The model version we are using in this study has a grid of 162 x 136
points and 31 levels in the vertical. The horizontal resolution is 0.21° X
0.21°. The time step for integration is 2.5 min. The forecast domain is
shown in Figure 1. The initial mean sea-level pressure is also given in the
figure.

3.2 Nonrecursiwe Implementation of Recursive Filters

A filter of the form (2) is to be applied to model output over a span
Ty = KAt. In signal processing the recursive nature of the filter is of great
advantage in limiting the storage requirements when long series of output
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values are to be generated: only 2N + 1 values need to be stored (the
latest values of z and y). But for initialization we require output at only a
single time (the end of the span T}) and storage can be further reduced by
expressing the recursive filter in nonrecursive form. If we define input and
output vectors x = (zg, 71, -+, 7x)’ and y = (yo,y1,---,vyx)T, the filter
(2) can be expressed as

y = Ax + By

where A and B are lower triangular matrices. This may be solved for the

output:
y = (I-B)'Ax = Fx. (7)

The last row of this equation gives an expression for the output y at t = T
in terms of the inputs zg, z1, -+, Tk:

K

n=0
This is formally similar to a nonrecursive filter (1) with the important
distinction that the time series of z-values is no longer centered around
the analysis time. Only the last row of the matrix F need be stored;
this matrix is easily generated row-by-row so that matrix inversion is not
required (see Appendix B).

figures 1
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The adiabatic digital filtering initialization scheme as described in
Lynch and Huang (1992) is a standard option for initialization in the
HIRLAM system. It is a straightforward matter to test recursive filters
as expressed in (8): we simply redefine the filter coefficients. In practise,
we perform the calculation of (8) for each model variable z at each grid-
point and level, accumulating the sum as the forecast proceeds. Thus, the
only additional storage needed is a single extra field for the final initialized
values yr.

3.8 Filter Parameter Values and Delay

There are three parameters which determine the characteristics of an ini-
tialization scheme using the recursive filter: the filter order, the cutoff
frequency and the filter span. In the experiments described in this paper,
the Quick-Start filter is used with a cutoff period of 3 hours. The filter span
is 1.5 hours, which needs 36 time-steps of model integrations, i.e., K= 36
in (8). The delay of the prototype second-order analog Quick-Start filter
is g = 2/0¢ = 1.287 (see Appendix A). An approximate expression for the
delay of the digital filter resulting from the bilinear transform is derived in
Lynch (1993a); for the chosen parameters it gives Ay = (7./27)dy ~ 0.61 h.
Thus, the delay is less than the filter span, and there will be a phase error
due to the application of the filter. The phase error can be reduced consid-
erably by applying the filter only to the analysis increment, as described
below.

It has been noted (by a reviewer of this paper) that, if the variation of
the group delay with frequency is large, different components will be phase-
shifted to different degrees, resulting in distortion of the field. A graph of
group delay (see Lynch, 1993a, Figure 5.2) indicates that for the Quick-
Start filter this variation is quite small for low frequencies. Moreover, if
such a problem were to arise, the phase distortion could be reduced by
using a Bessel filter, whose group delay is maximally flat. Another concern
is that addition of an increment with a phase-shift to a first guess without
one may result in significant errors. However, if both the increment and
the phase distortion are small, this should be a second-order effect. In
practice, no such difficulty has been observed.

Table 1: Position of pole o, start-up time 7y and delay dy of Quick-
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o T() 50 AO
1.554 0.644 1.287|0.614
2.858 0.350 2.100 | 1.003
3.733 0.268 2.679 | 1.279

N N

Start filters of orders 2, 6 and 10. The dimensional delay A is for a cutoff
period of 7, = 3 h.
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An alternative method of minimizing the phase error is to use a higher
order filter. The values of o = /1/(2'/N — 1), Ty = 1/o and &y = N/o for
the prototype analog Quick-Start filters of orders 2, 6 and 10 are given
in Table 1. The dimensional delay Ay = (7./27)dy for 7. = 3h is also
tabulated. This shows how the delay increases with filter order. Results
with a second-order filter are discussed in §5 and higher order filters are

considered in §6.

A simple example of the effect of filter delay can be seen in Figure 2.
The input X is a pure sinusoid with a period of 12 hours. Three outputs
Y are shown; the filters used are second-order, sixth-order and tenth-order
Quick-Start filters, each with a cutoff period of 7, = 3h. In each case the
oscillation is passed by the filter without undue attenuation. However, it is
subject to a phase change which varies with the order. It is clear from the
figure that the output is delayed relative to the input, and that this delay
increases with filter order. Measurement of the actual delays show them to
be in good agreement with the theoretical values. Note in particular that,
for a time equal to the delay, the output is effectively frozen at its initial
value: the solution more-or-less marks time for a period t ~ A,.

13
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4. Design of the Experiments

Several formulations of recursive filtering are described in this section. To
illustrate the idea of the methods, a schematic diagram is presented in
Figure 3. The top diagram on the left shows adiabatic (A) and diabatic
(D) trajectories for the time evolution of an ‘idealized’ model variable. The
difference between the adiabatic and diabatic processes is exaggerated to
show the potential problem with diabatic digital filtering initialization and
possible improvements of the new approaches. Other diagrams in Figure
3 will be discussed in sub-sections below.

4.1. NOI: No Initialization.

In the first experiment, no initialization is performed. This experiment
is referred to as NOI, and it provides one of the references to which the
recursive filtering experiments are compared.

4.2. DOF: Diabatic Optimal Filter Initialization.

In the second experiment the diabatic digital filtering initialization scheme
of Huang and Lynch (1993) is used. The optimal filter with 3h span, 15h
passband edge and 3h stop band edge is used. The experiment is referred
as DOF. It should be noted that DOF uses a non-recursive filter; the
experiment is performed to provide another reference for comparison with
recursive filters.

The way DOF is performed is shown by the centre left diagram of
Figure 3. An adiabatic integration backward in time is run first, following
trajectory ‘A’ for half of the filter span. A diabatic integration forward
in time is then carried out following the trajectory ‘D’. The optimal filter
is applied to the values on ‘D’ to yield the initialized field. A potential
problem of DOF is that the diabatic trajectory ‘D’ does not pass through
the analysis state at the analysis time ¢ = 0. Thus, there may be a phase
error due to the initialization scheme. Huang and Lynch (1993) did not find
any serious consequences of this problem. Nevertheless, a formulation of
the initialization scheme which removes it could be beneficial for theoretical
studies and operational applications.

4.8. IIR: Infinite Impulse Response Filter.

In the first recursive filter application, referred as IIR, a forward diabatic
model integration for 1.5h is performed (lower left diagram, Figure 3). The
model integration follows the trajectory ‘z;’ and the filtered field follows
the trajectory ‘y;’. Due to the delay char-
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acteristics of IIRs, the output lags behind the input and, for a short span,
one may assume the output to be valid at time ¢ = 0. However, as the
span is somewhat longer than the delay for the chosen parameter values,
there is a phase shift in the initialized field for this scheme.

4.4. INC: Incremental IIR Filter.

One means of minimizing the phase error is to apply IIR to the analysis
increment (referred as INC), instead of to the analysis field itself. The
basic assumption behind incremental initialization schemes is that the first-
guess field (normally a 6h forecast) is well balanced (e.g. Puri, et al., 1982;
Ballish et al., 1992). The analysis z# is the sum of the first-guess =¥ and
an increment:

:UA::EF+(:BA—:1;F).
Two diabatic integrations are carried out, one from the analysis z4 and
the other from the first-guess z¥, and two filtered fields y4 and y¥ are
calculated using the IIR scheme. These are then used to construct the
output:

y=a"+ (v —y").
If the analysis increment vanishes the filtering has absolutely no effect,
irrespective of the span. Thus, any phase shift applies only to the analysis
increment, not to the background field.

4.5. RAD: Recursive Adiabatic/Diabatic Scheme.

Another approach to minimize the phase difference associated with IIR is
to use an adiabatic integration backward to counteract the phase error pro-
duced by the diabatic forward integration. This experiment is referred to as
RAD, as it uses the recursive filter and requires both adiabatic (backward)
and diabatic (forward) integrations.

The idea of RAD is illustrated in the three diagrams on the right hand
side of Figure 3. The first step is to run the adiabatic model backward (z;)
and compute the filtered trajectory (y;). The ‘final’ value yx is then used
as the initial state for the diabatic integration. There is a small phase-
shift as the delay characteristics of the filter are less than perfect. During
the forward, diabatic, integration the filtering is applied again. The final
value yx is assumed to be valid at the analysis time (¢ = 0) and yields
the initialized field. There is another phase error introduced here, which
is in the opposite direction to the adiabatic one, due to the direction of
the integrations. The total phase error is therefore expected to be much
smaller than that of IIR.

The RAD scheme has some resemblance to the DOF scheme. However,
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there are fundamental differences between them. First of all, the valid time
on the filtered trajectory has conceptually never left the analysis time as
the filtered field may be assumed to apply at £ = 0 as long as the span is
less than the filter delay; therefore, the phase shift is very small. Secondly,
the adiabatic backward integration is used not to centre the trajectory
values, but only to reduce the phase error due to the imperfect filter.

4.6. TIAD: Incremental Adiabatic/Diabatic Scheme.

Finally, the idea of RAD is also applied to the analysis increment. This
scheme, denoted IAD, combines the ideas of INC and RAD, with a view
to further reducing the phase error. It involves four short integrations,
a reverse adiabatic and a forward diabatic one for both the analysis and
first-guess fields.

17
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5. Results with Second-order Filters
5.1. Reduction of Noise

The mean absolute surface pressure tendency Nj is chosen to measure the
global noise level. It is defined as

Ops
ot

1 I J
Nl—ﬁZZ

i=1j=1

ij

where the summation is calculated over the whole model domain. In Figure
4 the variation of Ny is shown for all experiments. All the curves converge
as the time integration is carried on. The distinct differences between the
uninitialized forecast and the initialized ones in the first 6 hours convinc-

ingly show that the initial noise due to the imbalance between mass and
wind fields is effectively removed by all the initialization schemes.

A more localized look at the noise is provided in Figure 5, where the
surface pressure py at a model point (indicated by ‘D’ in Figure 1) is plotted
for the first 6 hours for all experiments. It is seen that, in agreement with
the results shown in Figure 4, the large oscillations in p, in NOI do not
appear in other experiments. It may be noted that the IIR curve seems
to follow a different path from the other initialized runs, which cluster
together; this is presumably due to the presence of a phase shift resulting
from the span being larger than the delay.

While the variation in p, is a good indicator for external noise, the
variation in the vertical velocity w at the middle level reflects the presence
of internal noise. In Figure 6, w at level 16 (about 500 hPa) at the same
model point is shown for all experiments. Very high frequency oscillations
in w with period much shorter than 2 hours, appear in the uninitialized
run (NOI). These do not appear in other experiments; however, in INC
and IAD there are oscillations of about a 2 hour period in w which are not
filtered out. These oscillations are present not only in NOI, but also in the
forecast from the first-guess fields (not shown). Note that the IIR curve
appears to lead the other curves in phase by about an hour.

Some comments can be made here on the incremental initialization
schemes. As the basic assumption of all incremental initialization schemes
is that the first-guess field is well balanced, high frequencies in the forecast
from the first-guess (if they exist) should be allowed and not filtered out.
If these oscillations are physically significant, as assumed in incremental
initialization schemes, both INC and IAD give very good results: they
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preserve those oscillation implicit in the first-guess while removing those
due to the observations. On the other hand, in an operational context,
noise may persist longer than the analysis cycle time; under these circum-
stances, the incremental initialization schemes may give rise to problems,

while filtering of the complete model fields (as in DOF, IIR and RAD) can
provide noise free initialized fields.

5.2. Changes in initial fields and forecasts

Apart from controlling the high frequency noise, an initialization scheme
should cause only minor changes to the initial fields and should not degrade
the forecast which follows the initialization. One motivation for the present
investigation is to reduce the changes made by DOF in initial fields and
forecasts.

From Figure 5 and Figure 6, it can be seen that the noise in NOI
is damped during the model integration and that the model integration
may be considered free from noise after 6 hours. The best initialization
scheme should thus produce a solution which coincides closely with NOI
after a 6 hour integration. Using this as a criterion, a subjective comparison
of the experiments has been made, with the following result in order of
decreasing merit: (1) IAD, (2) RAD, (3) DOF, (4) INC and (5) IIR. Careful
comparisons have also been made for three more model points, indicated
by A, B and C in Figure 1. On the two ‘ocean’ points (A and C), the
differences between different experiments are smaller than those on the two
‘land’ points (D is a land point). Nevertheless, the results are qualitatively
similar for all the points.

The above evaluation is based upon a subjective judgement. Objec-
tive comparisons between different experiments have also been made by
computing the root-mean-square (rms) and maximum (maz) differences
in the model fields between the initialized and uninitialized experiments.
In Table 2, the rms and maz differences in temperature ('), winds (u, v)
and surface pressure (ps) between the initialized and uninitialized analyses
are shown. The numbers in the table are reasonably small and generally
less than the observational errors. Compared with DOF, the rms and mazx
differences are generally larger in IIR and INC and smaller in RAD and
IAD (the maz differences in temperature 7" are somewhat erratic). Similar
calculations are made for the 24 hour forecasts. The results in Table 3 show
very similar characteristics to Table 2. In general, the rms differences are
smaller for the forecasts than for the analyses.



Using the figures in Table 2 and Table 3 to place the five schemes
in order of merit leads to the same result as that from the subjective

comparisons: (1) IAD, (2) RAD, (3) DOF, (4) INC and (5) IIR (ordered
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from the smallest to the largest changes).

EXP

T(K)

u(ms™1)

v(ms™!)

ps(hPa)

maxr Trms

max

rms

max

rms

max

rms

DOF
IIR
INC

RAD
IAD

6.68
4.45
2.75
6.33
2.46

0.28
0.45
0.29
0.21
0.13

8.96
16.41
6.63
7.78
4.15

0.63
1.16
0.76
0.43
0.30

7.27
10.29
7.54
4.98
2.66

0.59
1.24
0.81
0.39
0.27

1.53
1.83
1.76
1.21
0.81

0.42
0.62
0.48
0.31
0.24

Table 2: Root-mean-square (rms) and maximum (max) differences in
temperature, wind components and surface pressure between the initialized

and uninitialized analyses.

EXP

T(K)

u(ms™1)

v(ms™1)

ps(hPa)

rms

max

rms

max

rms

max

rms

DOF
ITIR
INC
RAD
IAD

3.84
6.04
6.11
6.11
6.15

0.19
0.31
0.27
0.17
0.16

9.27
10.07
7.59
6.65
8.25

0.46
0.80
0.70
0.44
0.38

6.73
12.72
9.11
6.70
6.68

0.43
0.84
0.69
0.41
0.36

0.83
1.15
1.30
0.99
0.71

0.16
0.19
0.20
0.12
0.08

Table 3: Root-mean-square (rms) and maximum (maz) differences
in temperature, wind components and surface pressure between the 24
hour forecasts starting from the initialized data sets and the uninitialized

forecast.

21
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6. Higher Order Filters

The order of the Quick-Start filter was set to 2 in the experiments discussed
above. The simplest scheme using a recursive filter is that designated IIR:
it involves only a single integration forward in time for a span of 1.5 hours.
However, the scheme resulted in a significant phase error. In this section we
show how this problem may be overcome by using a filter of a higher order.
Due to the non-recursive implementation of the recursive filter (§3.2), there
is no extra demand on computer memory as the filter order is increased.
A higher order filter should give better initialization results, as the ratio
between the start-up and delay times is inversely proportional to the order
of the filter (see Appendix A). The delays for Quick-Start filters of several
orders, given in Table 1, show how A increases with the order N. So, for
a fixed span, the phase error should diminish as /V is increased.

The values in Table 1 also show that the start-up time decreases with
increasing order. This suggests that a shorter span may suffice for higher
filter orders. However, the quantity 7; does not truly reflect the time
required for the transient response to die away: this response is not purely
exponential, but involves products of powers of ¢ and exponentials. An
elementary example illustrates the problem: the function f(¢) = texp(1—t)
has an e-folding time ¢, = 1. But the function grows from zero to unity
as time ¢ varies between these values, and it does not fall to 1/e times its
maximum value until ¢ = 3.15. The e-folding time governs the long-term
decay but not the initial behaviour. It is found that higher order filters
require a span longer than might be expected from the magnitude of Tj.

The initialization experiments were repeated with the IIR scheme,
using filter orders ranging from 1 to 10. The span and cutoff were un-
changed throughout, at 1.5 hours and 3 hours respectively. It was found
that the changes induced in the initial fields become smaller as the order is
increased; furthermore, the impact on the 24 hour forecast also decreases.
However, the residual noise becomes larger with increasing order. Thus,
the choice of filter order is made so as to achieve adequate suppression of
noise while simultaneously keeping the impact on the analysed and forecast
fields at a reasonable level.

Table 4 shows the rms and maximum changes resulting from initial-
ization with filters of orders 2, 6 and 10. Table 5 gives the corresponding
figures for 24 hour forecasts. Clearly, the higher order filters result in
smaller changes. Figure 7 is a plot of the mean absolute surface pressure
tendency N; for the three forecasts. It is seen that the tenth-order filter
does not remove high-frequency noise to a sufficient degree. The sixth-
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order filter would appear to be an excellent compromise: noise suppression
is satisfactory, while changes to the analysis are at a level comparable to
observational error and impact on the 24 hour forecast is acceptable. Note,
in particular, the rms difference in surface pressure, which is only 0.12 hPa
in this case. Plots of pressure and vertical velocity (not shown) confirm
the efficacy of the sixth-order filter in eliminating gravity wave noise.

fig.7
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N T(K) u(ms™1) v(ms™1) ps(hPa)
mar Tms| mar TmMs| mar Trms|mar Tms
2 1445 045)16.41 1.16 10.29 1.24|1.83 0.62
6 |4.03 0.30]10.55 0.75| 6.45 0.80| 1.66 0.53
10| 3.64 0.22| 7.22 0.51| 447 0.54|1.76 0.50

Table 4: Root-mean-square (rms) and maximum (maz) differences in
temperature, wind components and surface pressure between the initialized
and uninitialized analyses. Results are for second, sixth and tenth order

filters.
N T(K) u(ms™1) v(ms™1) ps(hPa)
mar Tms| mar rms| mar Trms|maxr Tms
2 16.04 0.31]10.07 0.80]12.72 0.84|1.15 0.19
6 |3.23 0.19| 7.52 0.51] 9.26 0.53 ] 0.69 0.12
10| 3.24 0.14| 6.27 0.37] 6.20 0.37]0.45 0.08
Table 5:

Root-mean-square (rms) and maximum (maz) differences
in temperature, wind components and surface pressure between the 24
hour forecasts starting from the initialized data sets and the uninitialized

forecast. Results are for second, sixth and tenth order filters.
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7. Filtered Start-up or Launch

There are several reasons for performing initialization. Foremost among
these is the elimination of spurious high-frequency gravity wave noise. This
is essential for assimilation of observational data in an analysis/forecast
cycle. Initialization also produces realistic diagnostic fields, such as di-
vergence and vertical velocity, at the analysis time. Digital filtering has
also been shown to yield realistic fields of prognostic variables, such as
cloud water content, for which no observations are available (Huang and
Sundqvist, 1993). Thus, initialization enhances and extends the analysis.
However, if the sole requirement is noise suppression, initialization may
be replaced by a filtering process which produces balanced fields valid at
a time later than ¢ = 0. This has two advantages: overall computation
time may be reduced and phase error completely eliminated. To distin-
guish it from pure initialization, we will refer to this procedure as filtered
launching.

The second-order filter applied in §5 was found to suppress noise ef-
fectively if applied over a span T, = 1.5h. But the delay of this filter, for
a cutoff period 7, = 3h, was dyp ~ 0.6h. When the output was assumed to
be valid at ¢ = 0 and a 24h forecast made, the magnitude of the rms and
maximum differences from the uninitialized forecast suggested a phase er-
ror; the evolution of p, and w at a particular point reinforced this suspicion
(see curves marked IIR in Figures 5 and 6). If our interpretation of the
delay parameter ¢ is correct, the filter output should validate not at ¢t = 0
but at t = Ty — dy.

To confirm this argument, the second-order filter was applied over a
span of Ty = 1.5h, as in §5, and the time-step reset to Ty — dp; the model
variables were then replaced by the filter output, a forward step made and
the integration continued normally thereafter. The noise parameter N;
is shown in Figure 8. The curves NOI and IIR are for the uninitialized
forecast and that initialized as in §5. The curve DFL results from the
launching method: it coincides with NOI until time ¢t = 7T, at which
point the noise level is about 7 hPa/3h. The filter output, with a value
of Ny around 2 hPa/3h, is then used to continue the forecast from time
t =Ts — 09 = 0.9h. It is similar to the curve IIR, but shifted by 0.9h. The
difference between the 24h forecasts using the two alternative methods and
the uninitialized forecast are given in Table 6. The impact on the forecast
scores is much smaller for the launching scheme than for the initialization.
All the errors in the row marked DFL are significantly less than those
marked IIR. Note, in particular, the rms error in surface pressure for DFL:

25
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it is only 0.04 hPa; for practical purposes, this forecast is identical to the
reference run.

One advantage of the filtered launch is its economy: it requires only the
computation time for an integration of duration dy, since this is the amount
by which we step back the forecast; in the present case it is equivalent to a
forecast of about a half-hour. The other advantage is the minute impact on
the forecast: the differences in Table 6 confirm the absence of phase error.
The disadvantage of launching is the loss of other benefits of initialization,
such as the production of realistic diagnostic fields valid at the analysis

Recursive Filters

time. The choice depends on operational requirements.

EXP| T(K) u(ms™1) v(ms™1) ps(hPa)
mar TmMSs| mar rms| mar TMS|mMar TMS

IIR | 6.04 0.31|10.07 0.80|12.72 0.84 | 1.15 0.19

DFL | 3.08 0.10| 6.05 0.23| 3.93 0.20| 0.42 0.04

Table 6: Root-mean-square (rms) and maximum (maz) differences
in temperature, wind components and surface pressure between the 24
hour forecasts starting from the initialized data sets and the uninitialized
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forecast. Results are for initialization with second-order filter (IIR) and
filtered start-up with the same filter (DFL).
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8. Conclusions
8.1. Review of Results

In this paper a number of recursive filters have been investigated. Initial-
ization schemes based on a particular feature of these filters (the phase-lag
or delay of output with respect to input) are formulated and tested with a
sophisticated numerical weather prediction model, HIRLAM. When a low
order recursive filter is applied to the full fields produced by a one-sided
integration, a phase error is incurred; this is due to the need to use a
span considerably longer than the delay to achieve adequate filtering. It
was shown that this problem could be overcome by applying the filter to
the analysis increment (the INC scheme), by preceding the forward dia-
batic filtering by a reverse adiabatic filtering (the RAD scheme) or by a
combination of these methods (the IAD scheme).

Filters of higher order were also investigated. It was shown that no
extra storage was necessary if the non-recursive implementation (8) was
used. The impact on analysis and forecast is less with higher order filters
(for the same cutoff and span) but the degree of filtering is also less. It
was found that a sixth-order filter represents a good compromise: the
changes made to the analysed fields are of the order of observational errors;
the impact on the 24 hour forecast is very small; and elimination of high
frequency noise is satisfactory.

The non-recursive implementation of the recursive filters makes the
new initialization schemes as easy to use as the original scheme of Huang
and Lynch (1993). In addition, some CPU time is saved by using the
new schemes, since recursive filters are in general more effective than non-
recursive ones. The sixth-order IIR scheme yields results comparable to
the method (DOF) of Huang and Lynch (1993) at less than half the cost:
the latter requires a 1.5 hour backward adiabatic integration and a 3 hour
diabatic forecast, whereas the former requires only a 1.5 hour forecast.

The INC scheme requires two 1.5 hour integrations, but the forecast
from the first-guess field can be performed as soon as this field is available,
so it involves no extra delay in an operational setting. The added cost of
the mixed schemes, RAD and IAD, may be justified if their superior noise
elimination characteristics are required. These schemes were tested with a
second-order filter, but should yield even better results with the sixth-order
filter.

As an alternative to pure initialization, a filter which produce output
later than the initial time was investigated. This provided a very eco-
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momical method of eliminating high frequency noise. Its advantages and
disadvantages were discussed in §7.

Finally, it may be noted that recursive filters of the type considered
may be applied repeatedly during a forecast if noise control is desirable,
for example in climate modelling. With the order of the filter coefficients
reversed, no extra integration time is required, as the output validates at
the end of the span. These filters may also be useful in the formulation
of constraints for four-dimensional data assimilation; if they are used in a
forward-backward cycle, the nett phase-error vanishes.

8.2. Future Activities

Experiments reported in this paper are confined to the case of a single
analysis. Firm conclusions should be based on more exhaustive testing of
the various methods over an extended series of analysis/forecast cycles.
For practical reasons, we need to select those methods most likely to prove
operationally attractive. The results presented above give us guidance in
this choice.

If balanced fields valid at the initial time are required, the sixth-order
ITR scheme appears most attractive: straightforward application of this fil-
ter over a 1.5 hour forecast produces initialized fields acceptably close to the
analysis and eliminates high frequency oscillations while having minimal
impact on a 24 hour forecast. This scheme uses less than 50% of the com-
putation required by the nonrecursive filter of Huang and Lynch (1993).
If the launching alternative, discussed in §7, is acceptable on operational
grounds, a second-order filter may be used; with a delay of approximately
half an hour, the computational expense of this scheme is small. If max-
imum elimination of high frequency noise, with minimum introduction of
phase distortion, is desirable, then one of the more complex schemes, RAD
or IAD, may be used. The INC scheme appeared slightly less efficatious,
but is less complex and expensive.

Further testing of the alternatives, perhaps in the order mentioned in
the preceding paragraph, should be carried out over a series of analysis
cycles. If the simple option of sixth-order IIR filtering yields acceptable
results over an extended period, the more elaborate alternatives may not
be necessary.
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Appendix A. Analog Filters; the Quick-Start Filter
A.1. General Properties of Analog Filters

Analog filters are closely associated with linear differential equations. Let
us consider the linear second order o.d.e. governing a forced, damped
harmonic oscillator:

j + 200y + (0f + wp)y = x(t). (A1)

The coefficient og > 0 determines the damping and wy is the natural fre-
quency of the system. The Laplace transform of (A1) is

(s* 4 2005 + (0p + wd))i(s) = 2(s) + (5 + 200)y(0) + 3(0) (A2)
(hats denote transforms). The solution for zero initial conditions, y(0) =
y(0) =0, is
g(s) = H(s)(s) (A3)
where the transfer function or system function H(s) is given by

1

H(s) = .
(5) s2 + 2095 + (08 + wj)

(A4)

For w2 > 0 this function has complex conjugate poles in the s-plane, at
sp = —0op % iwp. The response function (A4) has the character of a low-pass
filter: for large |s|, H(s) behaves like s72, so its amplitude tends to zero
as w — *£oo, and high frequency inputs are effectively damped. For a
sinusoidal input, z(t) = exp(iwt), the steady-state response is

L Wt — H(iw) -z
10 = | iy | o = H) (0

Thus, pure sinusoidal input gives rise to an output of the same frequency,
whose amplitude and phase are determined by H (iw), the transfer function
evaluated on the imaginary axis of the s-plane. We can write H(iw) in
terms of its amplitude and phase:

H(iw) = M (w) - exp(ip(w))

and expressions for M (w) and ¢(w) follow from (A4):

Miw) = J o o e e (A9)
p(w) = —tan™ (w ;0w0> — tan™! <w jowo) : (A6)
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The special case of linear phase ¢ = —dpw corresponds to delay in time for
all components of the input irrespective of frequency. The time delay is
given in this case by §y = —dy/dw. Generalising this idea, we define the
group delay, 6, as the derivative of the phase response (A6) with respect
to frequency: § = —dp/dw. We will refer to the value of § at w = 0 simply
as the delay; from (A6) we get:

2
Sy = ——20

ot + wi

(A7)

The point s = iw, where the magnitude-squared equals half the value at
w = 0 determines the cutoff frequency:

| H (i) [* = 3| H(0). (A8)

It is convenient to consider prototype filters, for which w, = 1; the general
case is recovered by the the transformation s — s/w.. Using (A4) and
(A5), (A8) implies:

(05 +wp)* = 2(0p — wp) + 1. (A9)

This is the equation of a curve in the s-plane (Figure 9). It is a particular
case of a family of curves called Cassinian ovals. Since all prototype filters
have parameters (og,wp) lying on the curve (A9), there is in effect one
free parameter: we may impose one further condition on the filter. Three
special choices were considered in Lynch (1993a): the Butterworth filter,
whose amplitude response is maximally flat in the pass-band; the Bessel
or Flat-Delay filter, with a phase response as nearly linear as possible in
the pass-band; and the Quick-Start filter, with a transient response which
decays as rapidly as possible. The points on (A9) corresponding to these
three cases are indicated in Figure 9 by BW, FD and QS respectively; the
last of these will be described below.

A.2. The Quick-Start Filter

Without forcing, the solution of (A1) is evanescent for oy > 0; the transient
response decays with an e-folding time 1/0g. Thus, the most rapid decay
obtains for the largest possible value of oy. For the prototype second-order
filter (A4) this is the point where the curve (A9) intersects the horizontal
axis, with coordinates

1
0 \/i 1 0 ( )
The output of the filter based on this choice should reach a steady state
faster than for any other prototype filter. It corresponds to the case of
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critical damping for a harmonic oscillator. We shall call the filter based
on this choice the Quick-Start (QS) filter (no alternative name having
been found in the literature). The time-constant 1/0¢ is a measure of the
decay-rate of the transient response. We shall call this the start-up time
To = 1/0¢. We define the non-dimensional ratio of the start-up and delay

times:
Start-up T

Delay &
For application to initialization it is desirable that I' be as small as pos-
sible, so as to achieve maximum attenuation of the transient within the
delay period. The minimum value I' = % is attained by the Quick-Start
filter. Generalization to arbitrary order is straightforward: the N-pole fil-
ter whose transient solution decays most rapidly has all its poles on the
negative real axis, at s, = —o:

= (A11)

O’N

() = Gy (A12)

The prototype version (w, = 1) corresponds to the value o = /1/(21/N — 1).
We will refer to this as the N-th—order Quick-Start filter. It is easy to show
that the delay is 6o = N/o, so that

1o 1

= Mo~ N (A13)

which decreases indefinitely with increasing order.
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Appendix B. Inductive Construction of the Filter Matrix F

The filter matrix F in (7) can be constructed row-by-row without matrix
inversion. Let us define input and output vectors (of order n + 1) by

Xn:(x()a"')xn)) YH:(yO))yn)
and suppose they are related by the following expression:
Yn = FpX,. (Bl)

We wish to derive a similar relationship at step n + 1. The recursive filter
relationship (2) is

N N
Yn+1 = Z ApTp+1—k T Z bkyn+1—k- (BZ)
k=0 k=1
We define a coeflicient vector a,, (of order n + 1) by
a,=(0,...,0 ,an,...,a1)

n+1—Nterms Nterms

and b, in a similar way. Then (B2) may be written
Yn+1 = @pXy + bpYn + a0Tny1 - (B3)
This provides the next row of the matrix: using (B1) we can write
Yn+1 = Fri1Xn41 (B4)

where the filter matrix F,,,is given in block form:

F, O)

Fn+1 - (an + ann ag

The initial rows are normally constructed by means of lower order filters:
thUS, Yo = Lo,

Y1 = (a0$1 + alxo) + blyo = apT1 + (a1 + bl)xo

and so on until n = N, after which (B2) is used. In this paper the coeffi-
cients for each order n are those of a Quick-Start filter having the specified
cutoff period 7.. These are easily generated from (A12).
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Figure Captions

Figure 1. The model domain used in this study. The analysis of the
mean sea level pressure at 00Z 21 March 1993 is also shown.

Figure 2. Input X and output Y for second-order, sixth-order and
tenth-order Quick-Start filters. Input is an oscillation with period 12 hours.
Outputs have the same period and (approximately) the same amplitude,
but are phase-shifted to varying degrees. The cutoff period is 7. = 3 h.

Figure 3. Schematic diagrams of the diabatic digital filtering initial-
ization techniques. See the text for details.

Figure 4. Time evolution of the mean absolute surface pressure ten-
dency Nj averaged over the interior model domain (in hPa/3h) for various
schemes.

Figure 5. Time evolution of the mean sea level pressure p; (in hPa)
at a model point, which is indicated in Figure 1 by ‘D’.

Figure 6. Time evolution of the vertical velocity w (in hPa/s) at level
16 (about 500hPa) at a model point, which is indicated in Figure 1 by ‘D’.

Figure 7. Time evolution of the mean absolute surface pressure ten-
dency N; (hPa/3h). The parameters are the same as in the experiment
IIR, except for the filter order: N02: 2nd order; N0O6: 6th order; N10: 10th
order.

Figure 8. Time evolution of the mean absolute surface pressure ten-
dency N; (hPa/3h). NOI: no initialization; IIR: recursive initialization
with second order filter; DFL: filtered start-up with second order filter.

Figure 9. This peanut-shaped curve is the locus in the s-plane of the
poles s, = —op £ iwy of prototype second-order filters. The three special
cases considered in the text are indicated (BW, FD, @QS). The curve is
described by the equation (o7 + w2)? = 2(02 — wd) + 1. The unit circle is
shown for reference.
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