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Laplace transform integration of the shallow water equatians.
Part 2: Semi-Lagrangian formulation and orographic
resonance
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In this paper we combine the Laplace transform (LT) scheme wh a semi-
Lagrangian advection scheme, and implement it in a shallow ater model. It
is compared to a reference model using the semi-implicit ($lscheme, with both
Eulerian and Lagrangian advection. We show that the LT schera is accurate
and computationally competitive with these reference schmes. We also show,
both analytically and numerically, that the LT scheme is free from the problem
of orographic resonance that is found with semi-implicit sbemes. Copyright(C
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1. Introduction SLLT scheme. Two time level semi-Lagrangian schemes
. ) . offer a doubling of efficiency compared to three time level
In this paper a semi-Lagrangian Laplace transform (SLLygrsions (Temperton et al. 2001). §8 the SLLT scheme
shallow water model is developed. In Clancy and LynGill be evaluated using the test cases of Willimason et al.
(2011), referenced below as Part 1, we introduced t192). A number of variations of the SLLT discretisation

Laplace transform (LT) scheme for time integration angte discussed. Its symmetry and stability properties ac al
implemented it in a model using Eulerian advection. Th&amined.

scheme was shown to have advantages when compared to\ye explore the problem of orographic resonance in

a reference semi-implicit (SI) scheme. In particular, iSWa4 This is a spurious noise that results from the coupling
able to simulate Kelvin waves with greater accuracy. — f the semi-implicit and semi-Lagrangian schemes at high
The size of the timestep used with an Eulerigfg) nympers. We investigate the problem analytically and
advection scheme is limited by _cpnstramts of.s.tabllll%ow that, in a simple linear model, the semi-Lagrangian
rather than accuracy. By combining the semi-impligityp|ace transform scheme is free from this problem. We
averaging with a semi-Lagrangian treatment of adVec“‘%ﬂm‘irm that this result holds for the fully nonlinear shallo

Robert (.1981' 1.982) was able to p_erform stable a ter equations by numerical tests. Finallg, contains a
accurate integrations with even longer timesteps. Batds lmmary of the main results

McDonald (1982) showed that there was no CFL restriction

with the semi-Lagrangian advection scheme, and were the

first to implement it in an operational forecast mode?. Shallow water model

Further details on the development of semi-Lagrangian

methods may be found in the review of Staniforth and C6t&o semi-Lagrangian models were developed; one using

(1991). a semi-implicit discretisation and the other with the LT
A combined semi-Lagrangian and LT scheme for raethod. These are based on a spectral transform shallow

shallow water model is formulated 2. We use a spectralwater model calledSWEmodelwritten in Matlab. This

method for the spatial discretisation and test the modeodel is described in Drake and Guo (2001), with the

against reference Eulerian and semi-Lagrangian sespherical harmonictransform routines documented in Drake

implicit versions. The stability and accuracy of the schene¢al. (2008). The original code included an Eulerian skallo

are analysed. We use a two time level discretisation for tivater model, which we will also use as a reference.
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2 C. Clancy and P. Lynch

2.1. Semi-Lagrangian semi-implicit: SLSI When interpolating model fields to departure or
midpoints, bicubic interpolation was used. The nonlinear
The shallow water equations are written in the form terms are first extrapolated in time using
%—l—fé—i—ﬁv—N ntz _ 3 1 an—1
dt - Ny # =35Ni— 5N,
dd 9 )
dt FO+ Bu+ Vi@ =N before being interpolated to the midpoint valugg, . A
d® dd, - discussion of various interpolation options is given in the
o @ TP =Ne (1) review paper of Staniforth and Coté (1991).

_ ) S ) ) The system is solved using a spectral method. Each
where( is the relative vorticitys is the horizontal diver- field is expanded in terms of spherical harmonics, e.g.

gence ands3 = %g—j;. The constant reference geopotential
is @, with ® representing the deviation of the geopotential L o
height from this reference. The surface geopotentidl,is ¢= Z Z Y™ (A )
The nonlinear terms are £=0 m=—¢
Ne =—(0 whereY; (A, ) = e!™* P/*(\, p) andu = sin ¢. Orthog-
_— u 25in onality of the spherical harmonics is used to isolate indi-
Ns =(* - V? (T) + p— (VQ(U cos ¢) — ¢C vidual spectral coefficients. Following Coté and Staritio
v , 9 sin ¢ (1988), and defining = QAt ande}’ = |/ 577, we get
+cos¢ V4 (v cos ¢) + )
No = —(® — 0,)5 AZ§§+B§5§1+C§5%1:[RC]?
] ) S Aot — B Gty = O Gl
For the semi-Lagrangian semi-implicit (SLSI) model, a ALL(0+1) .
two time level discretisation is used. All linear terms are TS T 2 7= [Rsly

averaged in time, including the Coriolis terms (Temperton Al
and Staniforth, 1987; Co6té and Staniforth, 1988). The 7+ —=®0;" = [Re]," (3)
discretised system can then be written as 2

At At with
KT I B = R |
At At At qm o _ima m ol + 1)€m
OAT = ST s+ VPR = Ry 0w+ e
n+1 Aﬁ* n+1 an = a—ﬂegjrl
Y +7(I)5A = Rg (2) 1
with The spectral system can be shown to decouple to
RC = {g - 7f5 - 76’0} + At{NC}]\/}F2 LZ 56—2 +M€ 6[ +Ue 5[+2 = [R5]€ + 7 (aj ) [R@]Z
D
n 2 —1)ey al(l+2)e]
At At At wr 4o =DER g m L (R
R5={5+ TfC—Tﬁu—7V2@} +At{N5}IJ2 +K(f—l)—imoz[ <]£_1+(f—&-l)((—i—?)—ima[ C]“l
D m m At T m
At— n n+l (I)e :[R‘P]e 77@65 (4)
Ry ={®— b, — —P5 P, Ngl}' 2 .
N { 2 } +(®s)a+ {Ney LU+ )R] —a(b+ 1) el 6y —al?elty 674,

D mo_
G = Ll+1)—ima
Here{ }"i*" refers to an arrival value at a regular gridpoint

at time (n + 1)At with the corresponding departure valugvhere

{ }}, at timen At. Values at the trajectory’s midpoint are
1 m

denoted{ } 2. Ly =

The departure points are computed using the method _ ANZ 0041
outlined in Ritchie and Beaudoin (1994). For this iterativer;” = 1 — EZZO;) + <7> gtl+l

1
technique, an initial guess of the midpoint Wimﬁ;r2 is o 9 m V20 (01 9)2
obtained with the simple two-term extrapolation (ae) (£-1)7(E+1) (o) l(0+2)
2E—-1)—imla (L+1)2(+2)—ima(l+1)

o (P +0) el ey
L+ (l+2)—ima

(PO el

2 -0 —ima

0)
n+3) @ _ _3.n _ 1 n—1 m
(VM ) =Va T T2VaT3Va Ui =

Other possibilities are discussed in Temperton angoqq and even values dfare considered separately for
Staniforth (1987). Three iterations were used for this andeyery,, the system yields two tridiagonal matrix systems
each step new values foﬁ;rf were computed with bilinearfor the coefficientss;” which can be efficiently solved
interpolation. (Durran, 1999).
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Laplace transform integration 3

2.2. Semi-Lagrangian Laplace transform: SLLT An alternative would be first to discretise the derivative as
We consider a general evolution equation in Lagrangian de, (@)% = (R}
form -

dx LX =N(X 5 o .

FT = N(X) () The terms on the right are now all constants and so we can

dt

The total derivativel X /d¢ represents the change along th%aSIIy take the LT to get

trajectory of the fluid parcel. In the LT scheme of Lynch — —

(1991), the advection terms are separated when formulating de, (@)% — (®s)p
a Lagrangian approach and the Eulerian time derivative is dt s At

then transformed. In the present scheme we take the Lapl
transformalong the time-dependent trajectooy a parcel
arriving at a gridpointd at time level(n + 1). Formally, we
are integrating along the trajectory cont@uiso that

ggten methods were tested: the second was found to give
superior results in simulations and so was implemented in
the main SLLT code.

With the above approximations, the system to be

~ solved is now
XE/ e *T X dr (6)
T sC+fo+B0=Re
With a two time level approach, this trajectory starts agtim $6 — fC+ B+ V2D = Ry (8)
n at some departure poind, not necessarily coinciding ~ =~
with a gridpoint. This is the ‘initial value’ when taking the s®+ @6 = Re
transform of a Lagrangian derivative. The transform of the o R
prognostic equation (5) can then be written where we note thdf2® = V2®. The right-hand terms are
v n v 1 "JF% n 1 n+i

Here the nonlinear terms have been evaluated at the Rs =207 + l{Ng}Xj%

midpoint M of the trajectory and at time level + % This s

constant value is then transformed. Ry = O + (®s)a — (®)p + l{J\ﬂp}Xj%
We apply this to the system (1), yielding s At s

- 1 1 Each transformed variable is a function of space and the
sC—Cp+ fo+pPv= ;{Nq}M : complex variables and so they can be expanded in terms of
spherical harmonics; for example

53— — JC+ put V3B = (N3} A A
Clss \m) = DN G ()Y (A m)
Y/ m

e,
dt

PN 1 n+l
Fa5= L vayy

5O — o7 —
o ) } ) Note that the spectral coefficients in this case are funstion
The Coriolis terms need special consideration. Though s The system (8) can thus be solved spectrally, in a

constant in time, bothf and 5 vary along a trajectory. manner similar to the SLSI scheme, for a given value of

This means that transforms of products sucty@&gannot s. Using orthogonality as before, we get the following
be easily separated and make the system very difficult to

deCOUple. Am ( Am) Bm ( gm ) C'vm( gm ): RA™
One approach to overcome this is to assume that the® SG ) B (800 ) + O (8 01 el

changes inf andj along a trajectory are negligible, which jm (.Sm\ _ pm (Fm \ _ Am (Fm

allows us to write AL (S % ) B (S Q‘l) Ce (S “1)
L o N LOL+T) =0\ m
Jo— fad, [fC— fa( s a? (S(I)é)i[R‘;]é
Bu— Bati, Bv— BaD (s37) + 2@ (s37) = [Ral}

These are used for the SLLT model in this work. (©)

Alternatives were explored, but these approximations were

found to give the best results (Clancy, 2010). The transfoWHh

of the orpglraphy% also requires care. Like the Coriolis 7, . im 20 Fon _ (t+1) 20 om
terms, this is time-independent but varies along a trajgcto ¢ ((l+1) s’ ¢ /0 g ¢
If we assume the change to be small and treat it as ‘constant’ _ /20
atits arrival value, the orographic derivative term transfs cyr = 1 s €041
to
Cf{)\s T n ((I)S)Z+1 n . .
7 =50 (®s)p =5 — )= (@)D The above matches (3) withys here replacingt/2. As
o in the SLSI case, this system can be decoupled to give two
n n ~
= ()47 —(24)D tridiagonal matrix systems for thg" coefficients. We can
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Prepared usingjjrms4.cls



4 C. Clancy and P. Lynch

solve these and then evaluate all @@ and@m. Oncethese 2.5. Summary of method
are known we can synthesise each of the transformed fields ) )
5, ® andC. For SLLT this must be done for each valuesof W& Now present a brief summary of the SLLT algorithm:

on the inversion contour. We can then invert to the physical 1 compute the right-hand sides of (8), which contain

Part 1; for example 2. Compute the spectral coefficients of these and solve
N the system (9) for the coefficients of the transformed
5 1 Z 5 5A(s ) e n it prognostic variables
- N nEATRIEN 3. Synthesise the transformed fields from their spectral
n=l coefficients
2.3. Symmetry 4. Use the numerical operator in (10) to invert to the

time domain to get the solutions at the new time level

In the SLSI model, we consider the spectral coefficients

_ . 'Pltle order of 3. and 4. may be reversed, with possible
a real function which have the symmetry property

benefits to efficiency.
0" =(=1)" o 3. Testing the model
where the bar denotes the complex conjugate. As a resy
we only need to solve the tridiagonal systems in (4) f%

m 2 0.In the case of SLLT, we are dealing with the SPECURY hese runs. Results were compared with the reference
coefficients of the complex Laplace transform of the f'eldéulerian model. For Case 2, of a nondivergent zonal flow

for examplejy". The symmetry inn will not now hold and ith a geostrophically balanced height field, the errors for
we need to solve for afh. both the SLSI and SLLT schemes were very small, even

It is possible, however, to reduce the computationglih a 1 hour timestep. The errors for SLLT were about half
overhead of the LT method. Lynch (1991) discussesyf magnitude of those for SLSI.

symmetry which allows us to halve the number of points  For the mountain test case, Case 5, no analytic solution
on the inversion contour. For a real functigy) with LT exists. We used the STSWM model detailed in Part 1,
f(s), it follows from the definition of the transform that  run at a T213 resolution with a 360 second timestep, as
- a reference. In the left panel of Figure 1 we plot the
73 = f(s) normalisedl,, errors for the Eulerian, SLSI and SLLT
models at T119 resolution with a 600 second timestep over
On the inversionN-gon described in Part 1, the pointst 240 hour simulation. For the SLLT runs we us€d= 8
used in the summation satisfyy.1_, =3, for n = andr. =6 hours. In the right panel we present the errors

He SLSI and SLLT schemes were tested with cases 2, 5
d 6 from Williamson et al. (1992). No diffusion was used

1,..., N/2. We can then write the inversion summation a$or both semi-Lagrangian models at longer timesteps. Error
remain small, even at at a one hour timestep. The SLLT
R 1 N2 N N - model in particular shows little variation with increasing
evify = N > {sn f(sn) e’ +3, f(30) e?v"t} timestep. It should be noted that imbalance in the initial
n=1 conditions leads to rapid error growth in the initial few day
1 N/2 of the forecasts.
= — s, Flsn)esrt + s, Flsy, esm} For Case 6, the Rossby-Haurwitz wave, a T213
N ;{ flon) €57+ sn J(sn) e STSWM run was again used as a reference. The value
NJ2 for & specified in Williamson et al. (1992% = ghy with
_ 2 Z R {S f(s )esnt} (10) ho = 8km, had to be changed for the SLSI forecasts to
N &~ AN maintain stability, as discussed already. We uBed 1.1 x

10°m?s~2 in order to exceed the maximum height. The
Thus we are able to halve the number of inversion poirf6LT model ran without difficulty with the original value

needed for the LT method. used by Williamson et al. (1992).
In the left panel of Figure 2 we sele, errors for
2.4. Stability the various schemes, again at T119 and a timestep of

600 seconds. The right-hand panel shows errors at longer
Coté and Staniforth (1988) use a logarithmic form of themesteps. The SLSI and SLLT models show comparable
continuity equation in (1) for their two time level schemeaccuracy. Both significantly damp the wave when run with
Their stability analysis showed that, for the non-logariith long timesteps; this is more severe for SLSI. The SLSI
form used in our SLSI model, the mean geopotentiaodel would not run stably at a one hour timestep. The
must be greater than the maximum geopotential heigBLLT run remained stable, but was severely damped
A stability analysis of the SLLT scheme, following the  For both Cases 5 and 6, the SLLT model was also
approach of Durran (1999), has been carried out. Ttested using a cut-off period. = 3 hours. The accuracy
scheme is stable under lenient restrictions on the timestemained comparable with the = 6 simulations. It was,
and the value ofV in the inversion operator. Details ardowever, unstable for Case 6 with a one hour timestep.
givenin Clancy (2010). If these conditions are not satisfiethis is probably due to the stability criterion of the LT
an amplification factor slightly larger than 1 is possiblecheme described in Part 1. Witk =8 and 7. =3, a
However, no problems were encountered when running tivee hour timestep violates this. We note that this criterion
SLLT model. The model remained stable and did not requisea sufficient, but not necessary, condition. Case 5 ran
® > &, in contrast to the SLSI model. successfully at a one hour timestep.
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Laplace transform integration 5

4. Orographic Resonance % = % + u‘;a%, the linearised system is

The coupling of a semi-Lagrangian treatment of advection d¢ +f5=0

with a semi-implicit method for stabilising gravity waves dt

allowed numerical forecasts to be carried out with timestep d_5 — V2D =0 (11)
considerably longer than required for Eulerian schemes dt

(Robert 1981, 1982). While this technique was successful do Bs — dd,

in permitting stable and efficient forecasts, a problemaros at tT&0= dt

in the case of simulating flow over orography. id luti ised of inal herical
A simple analysis of the linearised shallow wat yve consider solutions comprised of a single spherica
fhfaermomc as follows

equations shows that stationary waves produce an infi

response to orographic forcing when the mean flow equals ¢ cm
the gravity wave speed. This physical phenomenon is 5 | = é‘in ei(mx\—l/t)PZm(M) (12)
unlikely to occur given the high speed of gravity waves o o

and does not generally pose a problem for numerical
simulations. However, Coiffier et al. (1987) showed thgfi, D, = (D)™ P (11). We substitute this into (11)

a semi-Lagrangian semi-implicit discretisation intro€lsic 5, take, — 0 to consider orographically-forced stationary

a spurious resonant response at large Courant nUMb&SRtions. Solving then fob?* we get

Numerical runs confirmed this analysis. As the main

advantage of a SLSI scheme was the ability to run at large (m@)2 _ g2
timesteps, this problem was a cause for concern. O = —5——(®,)}" (13)
(mz)? — G

A number of solutions have been proposed. Tanguay
et al. (1992) show that by spatially averaging all nonlinewhere
terms, the distortions near orography are reduced, though ) ,  LH1) -
not fully alleviated. Rivest et al. (1994) show that this &en Gr=f+—3—° (14)

improved upon by off-centring the semi-implicit averagin o
They examine first-order and second-order averaging f‘l&he squa_red frequency Qf th_e gravity-inertia wave. \We
d a physical resonance if this frequency equals that of

recommend the latter for better accuracy. This appro EP’\ mean flow
has been investigated in a number of atmospheric mod Is?; '
Héreil and Laprise (1996), Caya and Laprise (1999). . -
o .2. Linear analysis: SLSI

Ritchie and Tanguay (1996) found that the more efféll- y
cient first-order off-centring is sufficient if the orograph Ritchie and Tanguay (1996) analyse the problem in a three
term in the continuity equation is treated in an Euleridime level model. Here we adapt their analysis for a two
rather than a Lagrangian manner. They noted, howeJ#ne level version. First we consider a two time level semi-
a truncation error evident in both approaches, which i@grangian semi-implicit (SLSI) treatment of the lineads

smaller in the case of the Eulerian treatment of orograpfyStem: The orography is treated in a Lagrangian manner

The ECMWF model, for example, follows the approach ? no explicit diffusion is included. Discretising (11) we

Ritchie and Tanguay together with the spatial averaging©
Tanguay et al. (1992). The orographic contribution to the+! — ¢3

s {0}5 +{6}p

advection in the continuity equation is isolated and tr@ate A; + B =0

in a spatially averaged manner (Temperton et al., 2001). We-1 _ s» IS S A s VRN L Ve ST LV ST
note that, with the operational resolutions currently useu‘4 AL 2 = 5 Dy = 3 D _o
the model does not suffer from orographic resonance (Wegzﬂ — o BT LB (®.)a— (B

personal communication). AL + 5 = "

In reviewing this approach, Lindberg and Alexeev ) .
(2000) note that it has been largely successful but does Mg seek to examine the response of stationary waves to
fully remove the spurious response. Li and Bates (199¥)Pgraphic forcing and so look for solutions of the form
also show how off-centring can have a negative impact on m
large scale Rossby waves; the first-order method causes g gén
excessive damping. They find that by using a potential o = qu
vorticity form of the shallow water equations, a less > (@ f)m
damaging modified off-centring is possible. In their study s 8/¢
of a general class of off-centred schemes, Coté etal X199y, effect of the discretised time derivative is, e.g.,
recommend using the least amount of off-centring possible,

consistant with alleviating resonance, to minimize errors CZH — CzneimAAPZm _ Czneim(/\A—(DAt)le

At At

4.1. Linear analysis: physical response = ZH % e "% sind
t

The shallow water equations are given in vortiCityyhereg = %At_ Similarly,

divergence form and are linearised about a mean flew

aw cos ¢, wherew is a constant advecting angular velocity. ntl | en

e Pt () (15)

- - ; A 1 —if
The Coriolis paramete)f is taken to be constant. With — 5 = e % cost
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6 C. Clancy and P. Lynch

We apply these results to the discretised system. Eath must consider the transform@f"“*. This is a function
equation is then multiplied byt ¢’ and the linear systemof time only, sincev is a constant with no spatial variation.
can be solved fob: Therefore we can writ& {elmm} = —L___ Using this we

sin 62 -\2
o { f2c05297( ] ) (m) }(@S)Zn (16)

can write the transformed system as
G? cos? 0 — (—Si“(’)2 (mo)?
‘ 0

MX = X7 + R, (20)

Following Rivest et al. (1994) and Ritchie and TanguayhereX = (¢,4,®)”,
(1996), we consider the ratio of the numerical to the

physical response and so divide the above by (13) to get s f ’ 60 )
2 tan 62 —\2 -\2 2 M = 7f57(j2L>
(72— (2)" me)*) (mo)* - G7) Js @
Rsisi = ———5—— — (17) 8
(Gz - (#5°)" (mw) ) ((WW) - f2) and
We note first thatRsr,s1 has a zero denominator when 8
(m@)® — f2 = 0. As pointed out by Ritchie and Tanguay, R, = imo
this is not a resonance but is due to a zero value of the —— (D9
numerator of the physical response (13). There is, however, sormy
aspurious numerical resonance when The right-hand side has been Sp“t SO as to isolate the
response due to the orographic term. We focus first on this
tant | Ge (18) "esponse; thatis, we consider the system
0  Tme R
1vI)Corog = Rs

SinceGy is large, resonance occurs near the singular points
of tan 0, that is, ) ~
Solving for (®)orog We get

Gz(kz—l—%)ﬂ,forkEZ (29) ) )

= . _ n S +f

We present plots ofRspsr for a T119 truncation. (®)orog =imw (Ps)p s(s2+G2) (s —imo)

Following Ritchie and Tanguay we take= m and use ¢
the valuesf = 10~*s™" and ® = 5.6 x 10*m®s™>. We e see immediately that we cannot have 0, s = i m @
choose the advecting wind to be &0s' at the equator or 5 — +4(,. But |s| = v, the radius of the inversion

sothato = 22571, _ contour and so these situations can be avoided by a careful
In the left panel of Figure 3 we také&t = 600 contour choice.
and 3600 seconds. The response is plotted in terms of a The operatorg%, is applied to @)omg to recover

scaled wavenumbenA)/z. For these parameter valuesy, physical field. The expression f(ﬁ))o,og can first be
the case of zero physical response mentioned earlier ocelr

N L ; Sanded using partial fractions. We can then agyilyand
%mﬁA/W ~0.07 and this is seen by the jumps near thigsg ;o following results from Part 1 of this work:

For an exact solution we would have the response equal 1 A 1
to 1, indicated by the dotted line in each plot. Bor=600s £y { } = Hy(v) el and £ {g} =1

(solid line) we get acceptable results. At the longer tirest

of At = 3600s (dashed) there is clearly a resonant respoRggese results give us the physical solution obtained when

‘("1%‘;”%%;‘9/” ﬁ0'56' This is the first resonance given byye apply the numerical inversion operator to each term in
, - Ve

s—1iv

(®)orog- After inverting we get
4.3. Linear analysis: SLLT (Dorog) 4 = I/ (@)™ (21)
We now turn to the SLLT scheme to examine its effect 0 ere
orographically forced waves. Taking the Laplace transfor
of each equation along a trajectory, as discusséd.i, and £2 — (m@)? ¥ 2
again looking for steady state spherical harmonic solstionR?’ = (o2 HY(mo) — (G—)
of the form (15), we get i —(mw) ¢
mwF mwF
HT (G H™ (G
~ . 2(Gy —mw) (Ge) 2(Gy+ma) (Ge)
C—Ch+f5=0
~ ~ Ml +1)~ with
R G )
v tizAt AN
B @ 1+ 85 = 5T ()} () = (@) 78 aa 71~ (4
Considering the trajectory = \p + @t, we can write Since
o, = 2{((1)5)7; eim(/\D-HDt) Pem(,u)} ((I)s)D _ ((I)é)zn el mAD Pém(ﬂ)
_ (@5)% E{eimwt} _ (q)s>2n eim/\A €7i20 Pgm(ﬂ)
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Laplace transform integration 7

we can divide (21) byei™* P (u) and write The initial conditions are the 500hPa winds and
(Porog);” = e 2R (D))" geopotential height, as well as the surface geopotential,

We now note that the full solution of (11) is composei@ken from the ERA-40 dataset of the ECMWF (Uppala
of a free component and a forced response. To ensure giagl., 2005). We initialise with the Laplace transform
the solution of (20) agrees with the physical one in the liniftitialsation method, as outlined in Part 1.

© = 0 (see (13)), we choose the initial condition The simulations to be presented were all run ata T119
resolution with no added diffusion. The SLLT parameters
& used wereN = 8 and 7. = 6 hours. As predicted by the
Pgeo = G_f @ linear analysis, forecasts using a 600 second timestep did

not suffer from any spurious orographic resonance, since

with vanishing divergence and geostrophic vorticity. F&pIS only becomes an issue at high CFL numbers. We focus

this steady flow we havéd,e,) , = (®ye0) , and, similar on the North American continent and show the 24-hour
(c1e] - €0 D 3 . . . .

to the analysis in the previous paragraph, we can writecasted height using a one hour timestep. The linear

m i 2 m . analysis suggests that we may encounter problems with
(q)seO?z = et gT; (®5);". Now the total solution 0rog¥aphic ?egsonance for the ?/onger timestFe)p. In Figure
satisfies 5 we plot the height at 24 hours using the SLSI (left)

) and SLLT (right) models. The SLSI model shows very
P = {_ +R’} e—i20 (@) pronounced r_10ise over the mountains. As expected from_the
G; linear analysis, the SLLT model does not suffer from this
resonance.
As in the SLSI case, we divide the numerical response by
the analytic response (13) to get 45. SETTLS Formulation
Rspyr = HY (mo) e '?? When discretising the shallow water equations (1) for
- £\2 SLSI and SLLT, we evaluated the nonlinear terms at
muw (1 - (G—[) ) the midpoint of the trajectory. A number of alternative

+ 20 Hy(Gy)

5 — treatments of the nonlinear terms have been proposed. As
f2 = (ma) mentioned, Tanguay et al. (1992) recommend a spatial
{m® cosy (GrAt) + i Gysiny (GeAt)} (22) averaging, which helps to alleviate orographic noise and

also reduces the number of interpolations necessary.

wherecosy () andsiny (z) denote, respectively, the realGospodinov et al. (2001) discuss how this has been shown
and imaginary parts ofi?. The response in (22) will only to lead to problems, with non-meteorological noise being
have a zero denominator fgf = (m@)?. This is, however, observed in a number of forecasting centres. This was

the case of zero physical response as mentioned in the S$@lyed at ECMWF with the operational introduction of

analysis. Thus we expenb spurious resonant response téhe ‘Stable Extrapolation Two-Time-Level Scheme’, or
Orographyusing a SLLT discretisation. SETTLS (Hortal, 2002) Durran and Reinecke (2004) show

To illustrate this, we plofsy..r in the right-hand panel that, out of the class of schemes studied by Gospodinov et

of Figure 3 with parameters matching those for SLSI. f-» optimal stability is obtained with SETTLS. .
addition we use the value¥ = 8 and 7. = 6 hours. For The transform of a general prognostic equation
SLLT, however, there is no resonant behaviour present. Was given by (7), where the nonlinear terms were
On comparison with the SLSI resonances on the leftévaluated at the trajectory midpoint aN}(j? The
Figure 3, it may appear that we are resonance-free sSimglgTTLS scheme evaluates the nonlinear terms using
because the problematic wavenumbers have been removed(2 N7 — N™') + Nt }. We incorporated this into
by the LT filtering. However, it is important to note agairsLSI|. Everything else in the models, including the
that the expression in (22) shows no artificial resonan@jectory calculations, was unchanged. When tested with
regardless of wavenumber. To demonstrate this we plloé cases used i3, SETTLS version of SLSI showed
Rsrst and Rspr in Figure 4, this time for T213 resolutionimproved accuracy over the original (see Clancy (2010) for
and a 2 hour timestep. For the SLLT discretisation werther details).
choose a less severe cutoff of 3 hours aid= 16. With For the orographic resonance test case, we plot the 24
these parameter values we see resonant behaviour in Si&Ir forecast height using SLSI SETTLS with a one hour
aroundmA\ /7 between 0.1 and 0.2. The SLLT plot to th@mestep in Figure 6. Comparing with Figure 5, we see the
right of this show that these scales are being retained, BETTLS treatment greatly reduces the distortions over the

with no resonance. mountains, but nevertheless it is still present. The SLLT
discretisation is still the most effective for removing the
4.4. Shallow water experiments spurious response.

We now move to numerical tests with the fully nonlinea&. Conclusion

shallow water system, using the SLSI and SLLT models.

A number of previous authors have used the analysis atVi2 have developed a semi-Lagrangian shallow water model
UTC on the 12th of February 1979 as a case study [Riveising the Laplace transform filtering integration method.

et al. (1994), Rivest and Staniforth (1995), Li and Batdhis permits forecasts with longer timesteps than could be
(1996), Ritchie and Tanguay (1996)]. There is a stronged for an Eulerian model and compares favourably with
flow over the Rocky mountains, so this is very suitable farreference semi-Lagrangian semi-implicit (SLSI) scheme
investigating orographic resonance in terms of accuracy. We investigated the problem of
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orographic resonance associated with SLSI discretisatianndberg K, Alexeev VA. 2000. A Study of the Spurious Orogmap
By means of a linear analysis and also shallow wateResonance in Semi-Implicit Semi-Lagrangian Mod#sn. Weather
simulations, the SLLT model was shown to be free fromRev.128 1982-1989

this spurious noise.

tested in a shallow water model. Its advantages sho

The Laplace transform integration method has besir%
u

Lynch P. 1991. Filtering Integration Schemes Based on thpslce and

Z TransformsMon. Weather Re\119 653-666
hie H, Beaudoin C. 1994. Approximations and Sensitivit
xperiments with a Baroclinic Semi-Lagrangian Spectraldilo

also hold for baroclinic models used in operational NWP.pon. Weather Re.22 2391-2399
Its capacity to filter high-frequency waves should be @ftchie H, Tanguay M. 1996. A Comparison of Spatially Avezdg

particular benefit in the context of nonhydrostatic models.
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Figure 1. I errors for Case 5 for various timesteps
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Figure 2. I errors for Case 6 for various timesteps
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Figure 3. Numerical response to orographic forcing divided by thesitaf response. The dash-dot linefis= 1, where the numerical solution equals
the analytic solution. Left: SLSI. Right: SLLT. Note thattextremes atn A\ /7 ~ 0.07 are artefacts, due to the vanishing of the physical solution
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Laplace transform integration

SLSI Response: dt = 7200s
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Figure 4. Responses for SLSI and SLLT, T213 witké = 7200s, N = 16 and7. = 3 hours: the numerical response to orographic forcing dvidg
the physical response. The dashed lin&is- 1, where the numerical solution equals the analytic solutiod the dot-dashed line i3 = 0, where the
numerical solution is zero due to filtering. The extremesa&\ /7 & 0.04 are artefacts, due to the vanishing of the physical solution

SLSI: dt = 3600: Height at 24 hours
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Figure 5. 24-hour height forecasts att = 3600s for SLSI (left) and SLLT (right)
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