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1. Introduction

The requirement to modify meteorological analyses to avoid spurious high
frequency oscillations in numerical forecasts has been known from the be-
ginning of numerical weather prediction. The most popular method of ini-
tialization up to recently was normal mode initialization, or NMI (Machen-
hauer, 1977). This has been used in many NWP centres, and has performed
satisfactorily. Its most natural context is for global models, for which the
horizontal structure of the normal modes corresponds to the Hough func-
tions, the eigenmodes of the Laplace Tidal Equations. For limited area
models, normal modes can also be derived, but the lateral boundaries force
the introduction of simplifying assumptions.

Recently, an alternative method of initialization, called digital filter ini-
tialization (DFI), was introduced by Lynch and Huang (1992). It was gener-
alised to allow for diabatic effects by Huang and Lynch (1993). The latter
paper also discussed the use of an optimal filter. A much simpler filter,
the Dolph-Chebyshev filter, which is a special case of the optimal filter,
was applied to the initialization problem by Lynch (1997). A more efficient
formulation of DFT was presented by Lynch, Giard and Ivanovici (1997).

2. Advantages of DFI

The method of digital filter initialization, which is based on ideas from dig-
ital signal processing, has significant advantages over alternative methods,
and is now in use operationally at several major weather prediction centres.
Some of the principal advantages of DFI compared to available alternatives
are:

1. No need to compute or store normal modes;

2. No need to separate vertical modes;

3. Complete compatibility with model discretisation;
4. Applicable to exotic grids on arbitrary domains;



5. No iterative numerical procedure which may diverge;

6. Ease of implementation and maintenance, due to simplicity of scheme;
7. Applicable to all prognostic model variables;

8. Applicable to non-hydrostatic models.

The first advantage becomes more pronounced as the number of degrees
of freedom of the model increases. The second advantage over NMI is that
the latter method requires the introduction of an auxiliary geopotential
variable, and partitioning of its changes between the temperature and sur-
face pressure involves an ad hoc assumption. Advantage 3 eliminates dis-
cretization errors due to grid disparities. Advantage 4 facilitates the use
of stretched or irregular model grids. Advantage 5 means that all the ver-
tical modes can be initialized effectively. The sixth advantage is that the
simplicity of the method makes it easy to implement and maintain. The
seventh is that additional prognostic model variables, such as cloud water,
rain water, turbulent kinetic energy, etc., are processed in the same way
as the standard mass and wind variables; thus, DFI produces initial fields
for these variables which are compatible with the basic dynamical fields.
Last but not least, DFI filters the additional prognostic variables in non-
hydrostatic models in a manner identical to the basic variables. The DFI
method is thus immediately suitable for non-hydrostatic models (Bubnov4,
et al., 1995). This is not the case for NMI. It must be pointed out that DFI
is significantly more demanding of computational time than NMI. However,
the significant benefits justify this additional cost.

3. The Primitive Notion of Filtering

The concept of filtering has a réle in virtually every field of study, from
topology to theology, seismology to sociology. The process of filtering in-
volves the selection of those components of an assemblage having some
particular property, and the removal or elimination of those components
which lack it. A filter is any device or contrivance designed to carry out
such a selection. It may be represented by a simple system diagram, hav-
ing an input with both desired and undesired components, and an output
comprising only the former.

Good/Bad/Ugly — Filter —  Good

We are primarily concerned with filters as used in signal processing. The
selection principle for these is generally based on the frequency of the sig-
nal components. There are a number of ideal types — lowpass, highpass,
bandpass and bandstop — corresponding to the range of frequencies which
pass through the filter and those which are rejected. In many cases the in-
put consists of a low-frequency (LF) signal contaminated by high-frequency
(HF) noise, and the information in the signal can be isolated by using a



lowpass filter which rejects the noise. Such a situation is typical for the
application to meteorology discussed below.

Filter theory originated from the need to design electronic circuits with
precise frequency-selective characteristics, for radio and telecommunica-
tions. These analog filters were constructed from capacitors and inductors,
and acted on continuous time signals. More recently, discrete time signal
processing has assumed prominence, and the technique and theory of digital
filtering has evolved. Digital filters may be implemented in hardware using
integrated circuits, but are more commonly realized in software: the input
is processed by a program designed to perform the required selection and
compute the output.

4. Nonrecursive and Recursive Digital Filters

Given a discrete function of time, {z,}, a nonrecursive digital filter is de-
fined by

N
Yn= Y, GkTn_k. (1)
k=N

The output ¥y, at time nAt depends on both past and future values of z,,,
but not on other output values. A recursive digital filter is defined by

N L
Yn = D GkTn_k + Y btn—rk (2)
k=K k=1

where K, L and N are integers, with L and N positive. The output y,
at time nAt in this case depends on past and present values of the input
(for K = 0), and also on previous output values (occasionally, future input
values are also used (K < 0), in which case the recursive filter is non-
causal). Recursive filters are more powerful than non-recursive ones, but
can also be more problematical, as the feedback of the output can give rise
to instability. The response of a nonrecursive filter to an impulse §(n) is
zero for |n| > N, giving rise to the alternative name finite impulse response
or FIR filter. Since the response of a recursive filter to this input can persist
indefinitely, it is known as an infinite impulse response or IIR filter.

The frequency response of a recursive filter is easily found: let z,, =
exp(inf) and assume an output of the form y,, = H(6) exp(inf); substitut-
ing into (2), the transfer function H(0) is

N .
Z akefzke
H@O) = = —— (3)
1-— Z bke—ikG
k=1

For nonrecursive filters the denominator reduces to unity. This equation
gives the response once the filter coefficients a; and b; have been specified.



4

However, what is really required is the opposite: to derive coefficients (and
as few as possible) which will yield the desired response function. This
inverse problem has no unique solution, and a great variety of techniques
have been developed.

Only the most elementary design techniques for non-recursive filters will
be considered below. Recursive filters generally have superior performance
to nonrecursive filters with the same total number of coefficients. Numerous
accounts of recursive digital filters are available in publications on digital
signal processing (e.g., Oppenheim and Schafer, 1989). For a review in the
meteorological literature, see Raymond (1988), where another class of filter,
the implicit filter, is also discussed.

5. Design of Nonrecursive Filters

Consider a function of time, f(¢), with low and high frequency components.
To filter out the high frequencies one may proceed as follows:

[1] Calculate the Fourier transform F(w) of f(t);
[2] Set the coefficients of the high frequencies to zero;
[3] Calculate the inverse transform.

Step [2] may be performed by multiplying F'(w) by an appropriate weighting
function H.(w). Typically, H.(w) is a step function

(1 | < Jwdl
Hc(“’)‘{o, | > lwel, (4)

where w, is a cutoff frequency. These three steps are equivalent to a con-
volution of f(t) with h(t) = sin(w.t)/nt, the inverse Fourier transform of
H.(w). This follows from the convolution theorem

F{(hx f)()} = F{h} - F{f} = He(w) - F(w) (5)
Thus, to filter f(¢) one calculates
+o0

P = DO = [ b s myr. 0
For simple functions f(¢), this integral may be evaluated analytically. In
general, some method of approximation must be used.

Suppose now that f is known only at discrete moments ¢, = nAt, so
that the sequence {---, f_o, f-1, fo, f1, f2,- -} is given. For example, f,
could be the value of some model variable at a particular grid point at time
t,. The shortest period component which can be represented with a time
step At is Ty = 2At, corresponding to a maximum frequency, the so-called
Nyquist frequency, wy = m/At. The sequence {f,} may be regarded as the
Fourier coefficients of a function F'(6):

FO) = S fue ™, ™)

n=—oo
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where 6 = wAt is the digital frequency and F(0) is periodic, F(0) = F(0 +
27). High frequency components of the sequence may be eliminated by
multiplying F(#) by a function H4(6) defined by

(1, o< le.l:
Hd(e)‘{o, 6] > 16, (8)

where the cutoff frequency 6. = w.At is assumed to fall in the Nyquist
range (—m,m) and H4(0) has period 27. This function may be expanded:

o T .
Hy(0) = > hpe™™ 3 hy= % / Hy(0)e™de. (9)
n=-—00 -

The values of the coefficients h,, follow immediately from (8) and (9):

innd
h, = s“;:r c. (10)

Let {f¥} denote the low frequency part of { f, }, from which all components
with frequency greater than 8, have been removed. Clearly,

Hi6) - FO)= 3 fre ™.

n=—oo

The convolution theorem for Fourier series now implies that Hy () - F'(6) is
the transform of the convolution of {h,} with {f,}:

fi=*la= " hifoi (11)

k=—00

This enables the filtering to be performed directly on the given sequence
{fn}- It is the discrete analogue of (6). In practice the summation must
be truncated at some finite value of k. Thus, an approximation to the low
frequency part of {f,} is given by

N
fn= > Mfok (12)
k=—N

Comparing (12) with (1), it is apparent that the finite approximation to
the discrete convolution is formally identical to a nonrecursive digital filter.

As is well known, truncation of a Fourier series gives rise to Gibbs
oscillations. These may be greatly reduced by means of an appropriately
defined “window” function. The response of the filter is improved if h,, is
multiplied by the Lanczos window

v — sin(nw/(N + 1))
" nr/(N + 1)




The transfer function H(#) of a filter is defined as the function by which
a pure sinusoidal oscillation is multiplied when subjected to the filter. For
symmetric coefficients, hy = h_g, it is real, implying that the phase is not
altered by the filter. Then, if f,, = exp(inf), one may write fx = H(0) - fp,
and H () is easily calculated by substituting f, in (12):

N N
HO)= Y hpe ™ =|hg+2 hgcoskd|. (13)
k=-N k=1

The transfer functions for a windowed and unwindowed filter are shown in
Lynch and Huang (1992, Fig. 2). The use of the window decreases the Gibbs
oscillations in the stop-band |f| > |6.|. However, it also has the effect of
widening the pass-band beyond the nominal cutoff. For a fuller discussion
of windowing see e.g. Hamming (1989) or Oppenheim and Schafer (1989).

One of the simplest design methods for nonrecursive filters is the ex-
pansion of the desired filtering function, H(#), as a Fourier series, and the
application of a suitable window function to improve the transfer char-
acteristics. That is the method employed above. An alternative method
called frequency sampling fits the desired frequency response by making a
selection of values and calculating the inverse discrete Fourier transform to
obtain the filter coefficients. A more sophisticated method uses the Cheby-
shev alternation theorem to obtain a filter whose maximum error in the
pass- and stop-bands is minimized. This method yields a filter meeting re-
quired specifications with fewer coeflicients that the other methods. The
design of nonrecursive and recursive filters is outlined in Hamming (1989),
where several methods are described, and fuller treatments may be found
in Oppenheim and Schafer (1989).

6. Application of a Nonrecursive Digital Filter to Initialization

An initialization scheme using a nonrecursive digital filter has been devel-
oped by Lynch and Huang (1992) for the HiRLAM model. The value chosen
for the cutoff frequency corresponded to a period 7. = 6 hours. With the
time step At = 6 minutes used in the model, this corresponds to a (dig-
ital) cutoff frequency 6. = 7/30. The coefficients were derived by Fourier
expansion of a step-function, truncated at N = 30, with application of a
Lanczos window, and are given by

b, = siné:;r(/lifN_l_—}—l)l))] (sinrr(:rﬁc)) .

The frequency response was depicted in Lynch and Huang (1992, Fig. 2).
The central lobe of the coefficient function spans a period of six hours, from
t = —3 hours to t = +3 hours. The summation in (1) was calculated over
this range, with the coefficients normalized to have unit sum over the span.
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Thus, the application of the technique involved computation equivalent to
sixty time steps, or a six hour adiabatic integration.

The uninitialized fields of surface pressure, temperature, humidity and
winds were first integrated forward for three hours, and running sums of
the form

N
F5O) = shofo+ 3 honn (14)
n=1

where f, = f(nAt), were calculated for each field at each gridpoint and on
each model level. These were stored at the end of the three hour forecast.
The original fields were then used to make a three hour ‘hindcast’, during
which running sums of the form

1 N
f5(0) = §h0f0 + > henfn (15)

n=-—1

were accumulated for each field, and stored as before. The two sums were
then combined to form the required summations:

£*(0) = f£(0) + f5(0). (16)
These fields correspond to the application of the digital filter (1) to the
original data, and will be referred to as the filtered data.

In the foregoing, only the amplitudes of the transfer functions have been
discussed. Since these functions are complex, there is also a phase change
induced by the filters. Space prohibits further discussion here; however, it
is essential that the phase characteristics of a filter be studied before it is
considered for use. Ideally, the phase-error should be as small as possible
for the low frequency components which are meteorologically important.
The error in the high frequency stop-band is unimportant. It is salutary
to recall that phase-errors are amongst the most prevalent and pernicious
problems faced by the forecaster.

7. The Dolph-Chebyshev Filter

We now consider a particularly simple filter, having explicit expressions for
its impulse response coefficients. The details of the Dolph-Chebyshev filter
are presented in Lynch (1997). We will confine the present discussion to the
definition and principal properties of the filter; further information may be
found in the reference cited.

7.1. DEFINITION OF THE FILTER

The function to be described is constructed using Chebyshev polynomials,
defined by the equations
cos(n cos™! z) if |[z| < 1;
T — ’ — 7
n(2) {cosh(n cosh 'z), if |z| > 1.
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Clearly, Ty(z) = 1 and Ti(x) = z. From the definition, the following recur-
rence relation follows immediately:

Tn(z) = 22T, —1(x) — Tp—o(z), n > 2.

The main relevant properties of these polynomials are given in Lynch

(1997).
Now consider the function defined in the frequency domain by
T: 2
H(9) = onm (zg cos (0/2))
Ton (o)

where 7y > 1. Let 05 be such that z(cos(6s/2) = 1. As 6 varies from 0 to
0s, H(0) falls from 1 to r = 1/Teps(zg)- For 05 < 0 < w, H(#) oscillates in
the range £r. The form of H(6) is that of a low-pass filter with a cut-off
at & = 5. By means of the definition of 7, (z) and basic trigonometric
identities, H(€) can be written as a finite expansion

+M
H(0) = Z hy, exp(—ind).

n=—M
The coefficients {h,} may be evaluated from the inverse Fourier transform

1
hn:N

M
Om,
142 E T — 0
+ rmZI oM (mocos 2>(:osm n],

where [n| < M, N = 2M + 1 and 6,,, = 2arm/N (Antoniou, 1993). Since
H(0) is real and even, h,, are also real and h_,, = h,,. The weights {h,, :
—M < n < +M} define the Dolph-Chebyshev or, for short, Dolph filter.

In the HirRLAM model, the filter order N = 2M + 1 is determined by
the time step At and forecast span Ts. The desired frequency cut-off is
specified by choosing a value for the cut-off period, 75. Then 05 = 2w At/
and the parameters zy and r are given by

1 0 1

— =cos—, <= =cosh (2M cosh™! :1:0) .

o 2 T

The ripple ratio r is a measure of the maximum amplitude in the stop-band
[0, 7]: r = [side-lobe amplitude/main-lobe amplitude]. The Dolph filter has
minimum ripple-ratio for given main-lobe width and filter order.

7.2. AN EXAMPLE OF THE DOLPH FILTER

Let us suppose components with period less than three hours are to be
eliminated (7, = 3h) and the time step is At = h. Then 6, = 2rAt/7, ~
1.05. Tt can be shown that a filter of order N = 7, or span T = 2M At = 3 h,
attenuates high frequency components by more than 20 dB (the attenuation
in the stop-band is § = 201og |H(#)|). This level of damping implies that
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Fig. 1. Frequency response for Dolph filter with span Ts = 2h, order N =2M +1 =17
and cut-off 7, = 3h. Results for single and double application are shown. Left: Logarithmic
response (dB) as a function of frequency. Right: Amplitude response as a function of
period.

the amplitudes of high-frequency components are reduced by at least 90%
and their energy by at least 99%, which is found to be adequate in practice.

The DFI procedure employed in the HIRLAM model involves a double
application of the filter. Thus, we examine both the frequency response
H(0) and its square, H(6)2, as the effect of a second pass through the
filter is to square the frequency response. The parameters chosen for the
DFT tests below are span Ts = 2h, cut-off period 74 = 3h and time step
At = 450s = th. So, M = 8, N = 17 and 0, = 2rAt/7, ~ 0.26. The
response and square response are shown in Fig. 1 (left panel). The ripple
ratio has the value r = 0.241. A single pass attenuates high frequencies
(components with |@] > |05|) by at least 12.4dB. For a double pass, the
minimum attenuation is about 25dB, more than adequate for elimination
of HF noise. For ease of visualisation, the response is also plotted as a
function of period in Fig. 1 (right panel). From this it is clear that the
amplitudes of components with periods less than two hours are reduced to
less than 5% of their original value. At the same time, components with
periods greater than one day are substantially left unchanged. It is crucial
for an initialization scheme that it does not distort the meteorologically
significant components of the flow: the filter described here has the required
property.

In Lynch (1997, Appendix) it is proved that the Dolph window is an
optimal filter whose pass-band edge, 6,, is the solution of the equation
H(6) =1 — r. Since an optimal filter is, by construction, the best possible
solution to minimizing the maximum deviation from the ideal in the pass-
and stop-bands, the Dolph filter shares this property provided the equiva-
lence holds. However, note the essential distinction: for the general optimal
filter, 6, can be freely chosen; for the Dolph window, it is determined by the
other parameters. The algorithm for the optimal filter is complex, involving
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about one thousand lines of code; calculation of the Dolph filter coefficients
is trivial by comparison.

8. Implementation in HIRLAM
8.1. OUTLINE OF THE METHOD

The digital filter initialization is performed by applying the filter to time
series of model variables. The coefficients of the Dolph filter, {h, : —M <
n < +M}, are real and symmetric: h_,, = hy,. Thus, the phase response is
such that the output is valid at the centre of the span. If we had a model
integration centred on the initial time, ¢ = 0, the filter would produce out-
put valid at that time. However, as the model contains irreversible physical
processes, it is not possible to integrate it backwards in time. The solution
is to apply the filter in two stages: in the first, a backward integration from
t = 0 to t = —Tg is performed, with all irreversible physics switched off.
The filter output is calculated by accumulating sums of the form

n=N
= Z hy—mTn,
n=0

where z is a particular prognostic variable at a particular grid point and
level (the same sum is accumulated for all prognostic variables). The output
z is valid at time t = —%Tg. In the second stage, a forward integration

is made from ¢t = —%Ts tot = —l—%Ts, starting from the output of the
first stage. Once again, the filter is applied by accumulating sums formally
identical to those of the first stage. But now the output is valid at the centre
of the interval [—%TS, —I—%Ts], i.e., at t = 0. The output of the second pass of
the filter is the initialized data. The values of the prognostic variables at the
lateral boundaries are left unchanged during the digital filtering process.

An adiabatic backward integration followed by a diabatic forward inte-
gration will not return the variables to their initial values. This deviation,
called the diabatic discrepancy, is reduced by the method of Lynch, et
al. (1997), but not completely eliminated. Some work towards developing
a boundary filter, relying solely on a forward integration, is reported in
Lynch and McGrath (2001).

Complete technical details of the original implementation of DFT in the
HirLAM model may be found in Lynch, et al., (1999). A reformulation of the
implementation, with further testing and evaluation, is presented in Huang
and Yang, 2002.

8.2. INITTALIZATION EXAMPLE

A detailed case study based on the first implementation in HIRLAM was
carried out to check the effect of the initialization on the initial fields and
on the forecast, and to examine the efficacy of DFT in eliminating high fre-
quency noise. The digital filter initialization was compared to the reference
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Fig. 2. Mean absolute surface pressure tendency for three forecasts. Solid: uninitialized
analysis (NIL). Dashed: Normal mode initialization (NMI). Dotted: Digital filter initial-
ization (DFI). Units are hPa/3 hours.

implicit normal mode initialization (NMI) scheme, and to forecasts with
no initialization (NIL). Forecasts starting from the analysis valid at 1200
UTC on 10 February, 1999 were compared.

We first checked the effect of DFI on the analysis and forecast fields.
The maximum change in surface pressure is 2.2hPa, with an rms change of
about 0.5hPa. The changes to the other analysed variables are in general
comparable in size to analysis errors, and considerably smaller in magnitude
than typical changes brought about by the analysis itself: the rms change
in surface pressure from first-guess to analysis is about 1hPa. The rms
and maximum differences between the uninitialized 24 hour forecast (NIL)
and the filtered forecast (DFI) for all prognostic variables were examined.
When we compare these values to the differences at the initial time they
are seen to be generally smaller. The changes made by DFI are to the
high frequency components; since these are selectively damped during the
course of the forecast, the two forecasts are very similar. After 24 hours
the maximum difference in surface pressure is less than 1hPa and the rms
difference is only 0.1hPa.

The basic measure of noise is the mean absolute value of the surface
pressure tendency

Ops
ot

1 NMAX
Ny =
! (NMAX) 2;
n=1
For well balanced fields this quantity has a value of about 1 hPa/3h. For

uninitialized fields it can be an order of magnitude larger. In Figure 2 we
plot the value of N; for three forecasts. The solid line represents the forecast
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Figure 3. Vertical velocity at 500 hPa over western Europe and the eastern North Atlantic.
(Left) Uninitialized analysis (NIL); (Right) after digital filtering (DFI).

from uninitialized data: we see that the value of N; at the beginning of
the forecast is about 12 hPa/3h. This large value reflects the lack of an
effective multivariate balance in the analysis. It takes about six hours to
fall to a reasonable value. The dashed line is for a forecast starting from
data initialized using the implicit normal mode method (NMI). The starting
value is about 3 hPa/3h, falling to about 1.5 hPa/3h after twelve hours.
The final graph (the dotted line) is for the digitally filtered data (DFT).
The initial value of N7 is now about 1.5, and remains more-or-less constant
throughout the forecast. It is clear from this measure that DFI is more
effective in removing high frequency noise than NMI.

The measure N indicates the noise in the vertically integrated diver-
gence field. However, even when this is small, there may be significant
activity in the internal gravity wave modes. To see this, we look at the
vertical velocity field at 500 hPa for the NIL and DFT analyses. The left
panel in Fig. 3 shows the uninitialized vertical velocity field, zoomed in
over western Europe and the eastern North Atlantic. There is clearly sub-
stantial gravity wave noise in this field. In fact, the field is physically quite
unrealistic. The right panel shows the DFI vertical velocity. It is much
smoother; the spurious features have been eliminated and the large values
with small horizontal scales which remain are clearly associated with the
Scottish Highlands, the Norwegian Mountains and the Alps. Comparison
with the NMI method (see Lynch, et al., 1999, for details) indicates that
DFT is more effective than NMI in dealing with internal gravity wave noise.
It is noteworthy that stationary mountain waves are unaffected by digital
filtering, since they have zero frequency. This is a desirable characteristic
of the DFT scheme.

8.3. BENEFITS FOR THE DATA ASSIMILATION CYCLE

In Lynch, et al., 1999, a parallel test of data for one of the FASTEX in-
tensive observing periods showed that the DFI method resulted in slightly
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improved scores compared to NMI. As it is not usual for an initialization
scheme to yield significant improvements in forecast accuracy, some dis-
cussion is merited. We cannot demonstrate beyond question the reason for
this improvement. However, the comparative results showed up some def-
inite defects in the implicit normal mode initialization as implemented in
the reference HirLaAM model. It was clear that the NMI scheme did not
eliminate imbalance at lower model levels. Moreover, although the noise
level indicated by the parameter N; fell to a reasonable level in six hours,
there was still internal gravity wave noise, not measured by this parame-
ter. Any noise in the six hour forecast will be carried through to the next
analysis cycle, and will affect the quality control and assimilation of new
observational data. It is believed that the DFI scheme, with its superior
ability to establish atmospheric balance, results in improved assimilation
of data and consequently in a reduction of forecast errors.

9. Digital Filtering as a Constraint in 4DVAR

We conclude with a remark on the application of a digital filter as a weak
constraint in four-dimensional variational assimilation (4DVAR). The idea
is that if the state of the system is noise-free at a particular time, i.e., is
close to the slow manifold, it will remain noise-free, since the slow manifold
is an invariant subset of phase-space. We consider a sequence of values
{z9,x1,%2,---zn} and form the filtered value

N
T = Z hn T, (17)
n=0

The evolution is constrained, so that the value at the mid-point in time is
close to this filtered value, by addition of a term

1 _
Je = §HH37N/2 —z||?

to the cost function to be minimized (u is an adjustable parameter). It is
straightforward to derive the adjoint of the filter operator. Gauthier and
Thépaut (2001) applied such a constraint to the 4DVAR system of Météo-
France. They found that a digital filter weak constraint imposed on the
low-resolution increments efficiently controlled the emergence of fast os-
cillations while maintaining a close fit to the observations. As the values
required for input to the filter are already available, there is essentially no
computational overhead in applying this procedure. The dynamical imbal-
ance was significantly less in 4DVAR than in 3DVAR. Fuller details may
be found in Gauthier and Thépaut (2001).

10. Conclusion

The very notion of eliminating what is called “noise” is open to debate.
There is no doubt as to the presence of high frequency motions in the at-
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mosphere, and some evidence suggests that they may have a function in
the development of meso-scale systems. If the feedback from HF compo-
nents to the meteorologically significant motion is found to be important in
certain circumstances, the application of filtering may be injudicious. It is
important to minimize spurious imbalances in the analysed fields, through
improved modelling of the multivariate background error covariances, and
thus reduce the size of the changes induced by the initialization process.
Removal of gravity waves cannot be unequivocally justified; the problem
becomes all the more acute as model resolution increases.
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