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Attacks to algebraic-curve-based cryptosystems:

1. The square-root Attacks

General attacks to a finite abelian group G,

l := #G the key length

e.g. Baby-step-giant-step attack or Pollard’s rho-method or lambda-
method, with complexities as Õ(l1/2).
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2. Index calculus to hyperelliptic curves

The double-large-prime variation is the most powerful attack for hy-
perelliptic curves(Gaudry-Theriault-Thome-Diem, Nagao).

For a hyperelliptic curve H/Fq of genus g, it costs Õ(q2− 2
g )

e.g. a hyperelliptic curve of genus 3 over Fq is attacked with cost
of Õ(q

4
3 ), a little faster than square-root attacks.

Presently, cryptosystems use elliptic curves and hyperelliptic curves
of genus 2, 3, with key length of 160 bits.
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3. Index calculus to non-hyperelliptic curves

Diem’s recent attack shown that non-hyperelliptic curves with low
degrees are weaker than hyperelliptic curves.

For a nonhyperelliptic curve C/Fq of g ≥ 3, degC = d, Diem’s

double-large-prime variation costs Õ(q2− 2
d−2 ).

When genus g = d− 1, Õ(q2− 2
g−1 ).

e.g. g = 3 non-hyperelliptic curves s.t. C34 curves can be attacked
in Õ(q).
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4. Attacks to curves defined over extension fields

In implementation, there are always strong requests to use curves
defined over certain extension of finite fields with good properties.

e.g., the extension fields which possess a normal basis.

or extension fields with small characteristics so Frobenius expan-
sion can be used in fast addition.

On the other hand, such structures could also introduce properties
which can be used in attacks.
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Weil descent and GHS attack
Weil descent is introduced to cryptography by G. Frey in ECC1998.
This idea is realized by Gaudry-Hess-Smart 2000 (GHS attack)
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The DL on E/K is mapped to Cl0(F/k) by the norm-conorm map

NK/k ◦ ConK/k : E/K −→ Cl0(F/k)
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GHS as a covering attack(Frey, Diem)

K/k, [K : k] = d:

π/K : C −→ C0 : a covering
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The DL on J(C0/K) is mapped to J(C/k) by the norm-conorm map

NK/k ◦ ConK/k : J(C0/K) −→ J(C/k)
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Researches on Weil descent attack

Frey “How to disguis elliptic curves “ ECC1998
GHS attack to elliptic curves over char=2 2000
GHS to genus 2 hyperelliptic curve in char=2, Galbraith
Evaluation the genera of F in GHS by Menezes, Qu
GHS attack implementation by Jacobson, Menezes, Stein
GHS to families of Kummar extensions by Theriault
GHS to families of Artin-Schreier extensions by Theriault
GHS to genearal Artin-Schreier curves by Hess
Using isogeny classes by Galbraith, Hess and Smart
GHS to hyperelliptic curves of arbitary characteristics by Diem
Cover attack by Frey, Diem
Weak fields by Menezes, Teske, Weng
· · · · · ·
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Curves with weak coverings

If such coverings exist and DL on J(C/k) can be solved

faster than on J(C0/K), we call C0 to be ”with weak cov-

erings”.

Questions:

(1) what kind curves C0 have weak coverings.

(2) how many of them

(3) how to construct such coverings

Classification and density analysis seemed nontrivial.

It is also believed that they are special therefore rare.
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This research

(1) A classification of elliptic/hyperelliptic curves with (2, ..., 2)

coverings under a condition.

(2) We show that such weak curves do exists except for the

case (g0, d) = (1, 2), (1, 3) (where C is hyperelliptic.)

(3) Density analysis of these curves are shown.

(4) Explicit defintion equations of such weak curves.

(5)Explicit construction of the coverings.
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In fact, the number of these weak curves could be large.

e.g. for char(k) 6= 2, g0 = 1, d = 3, a half of random elliptic

curves E defined over k3 in the Legendre form are weak.

A such curve with 160-bit key-length will have only strength

of 107 bits under GHS attack.

Similar for g0 = 2, 3.

Also in the cases of char= 2, g0 = 1, 2, 3.
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GHS attack considered in this research

Let q be a power of prime. k := Fq, K = kd := Fqd.

Let C0

/
kd be a hyperelliptic curve with g(C0) = 1, 2, 3.

We assume ∃C/k: a curve s.t.

π
/
kd : C −→ C0

is a covering defined over kd.
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We consider that following curves.

C0/kd : y2 + g(x)y = f (x)

g(x): monic if char(k) = 2, g = 0 if char(k) 6= 2, such that

C0
2−→ P1(x)

is a degree 2 covering over kd



Elliptic and hyperelliptic curves with weak coverings, ECC2007 14

Definition of a (2, 2, · · · , 2) covering

A n-tuple (2, ..., 2) covering is a covering π/K : C −→ P1

s.t.

cov(C/P1) ' (Z/2Z)n

Here, cov(C/P1) := Gal(K(C)/K(x)).
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(2, 2, · · · , 2) covering in GHS attack

Assume C0 is a hyperelliptic curve,

C −→ C0
2−→ P1(x)

is a (2, 2, ..., 2) covering of degree 2n
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In language of function fields, the function field of C:

kd(C) is the composite of kd(
σiC0), i = 0, ..., d− 1

kd(C) =

d−1∏
i=0
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g0 := g(C0), g := g(C)
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Condition (C):

Res(π∗) : J(C) −→ Reskd/k(J(C0))

is an isogeny over k.

This implies g = dg0, the smallest possible genus of C.

Lemma 1: Equivalent statement to the Condition (C):

∃H < cov(C/P1), a subgroup of index 2 such that the

Tate module of J(C) has the decomposition:

Vl(J(C)) = ⊕d−1
j=0 Vl(J(C))

σjH
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We will classify (2, ..., 2) coverings of

n︷ ︸︸ ︷
(2, · · · , 2)︷ ︸︸ ︷

C −→ C0 −→ P1(x)︸ ︷︷ ︸
2

satisfying the Condition (C).

Then analyze the density of curves with such coverings.

Show explicit definition equations of C0 and C.
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Approach:

Classification of representation of G(kd/k) on cov(C/P1)

G(kd/k) =< σ > y cov(C/P1) ' Fn2
G(kd/k) =< σ > ↪→ GLn(F2)





char(k) 6= 2 : Riemann-Hurwitz inequality

char(k) = 2 :





ordinary

{
(R-H) + classification of
orders of ramification groups

non-ordinary ramification theory
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Cases when (2, 2, ..., 2) coverings exist:





Indecomposable





2|d
{

char(k) = 2 : (d, n) = (2, 2), (4, 3)
char(k) 6= 2 : (d, n) = (2, 2)

2 6 |d





d 6= 2n − 1

{
char(k) 6= 2 : (d, n) = (5, 4)
char(k) = 2 : Not exist

d = 2n − 1

{
char(k) 6= 2 : Exist
char(k) = 2 : Exist

Decomposable

{
char(k) = 2 : g0 = 1, d = (2a − 1)(2b − 1), n = a+ b
char(k) 6= 2 : g0 = 1, (d, n) = (3, 3)
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Weak curves in the char(k) 6= 2 cases:

d n hyper/nonhyper g0 #C0

2 2 hyper Θ(q2g0)
3 2 Θ(q3g0)?(*)

hyper 1 Θ(q2)
3 3 hyper 1 Θ(q2)

2n − 1 ≥ 3 nonhyper Θ(qd`−3)?(**)
5 4 nonhyper 1 Θ(q2)

(*) In the case g0 = 1, this density is proved.

(**) ` s.t. g0 + 1 = 2n−2`

Note: Here “?” means a conjectured density.
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Weak curves in the char(k) = 2 case:

d n hyper/non g0 ordin/non #C0

2 2 hyper Θ(q2g0)
4 3 hyper Θ(q2g0+1)

2n − 1 Θ(q(n+1)(g0+1)−3)
hyper 1 ordin Θ(qn)?

e.g. 2 Θ(q2)
(2n1 − 1)(2n2 − 1) n1 + n2 nonhyper 1 ordin Θ(qn1+n2−1)?

2 ≤ n1, n2

(2n1 − 1, 2n2 − 1) = 1

Note: Here “?” means a conjectured density.
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An important case: char(k) 6= 2, g0 = 1, d = 3

Elliptic curves over extension fields are often desirable in

practice for fast and low-cost implementation.

e.g. a fast and cheap way of implementation is to use an

elliptic curve defined over degree 3 extension of a 64bit finite

field, on a 64bit processor with single-decision-arithmetics.

In fact, we show that such a setting is dangeous.
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Genus 3 hyperelliptic covering

The degree of the covering C −→ P1(x) is 8.

E/k3 : y2 = eg(x)(x− α)(x− αq)
here α ∈ k3 \ k, e ∈ k×3

g(x) ∈ k[x], deg g(x) = 1 or 2,

This equation has been also obtained by Theriault.

# {k3 − Isomorphic classes of E} = Θ(q2)

C/k can be explicitly constructed.
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Genus 3 non-hyperelliptic covering

The degree of the covering π : C −→ P1(x) is 4.

C0 = E/k3 can be separated into the following two types:

Type 1: E : y2 = (x− α) (x− αq) (x− β) (x− βq)
α, β ∈ k3 \ k, #{α, αq, β, βq} = 4

Type 2: E : y2 = (x− α)
(
x− αq3

)
(x− αq)

(
x− αq4

)

α ∈ k6 \ {k2 ∪ k3}
The Type I curve has been also obtained by Diem.
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Sufficient and necessary condition that C is hyperelliptic

(For Type II, β := αq
3
)

C : hyperelliptic ⇐⇒



∃A ∈ GL2(k)

s.t. T r(A) = 0

and β = A · α
which reduces to the former case, hereafter we will consider

only non-hyper cases.

PGL2(k)-action:

A =

(
a b

c d

)
∈ PGL2(k), , α ∈ k3 A · α :=

aα + b

cα + d
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Type I curves:

E is k3-isomorphic to the following Legendre canonical form.

E '
/k3

y2 = x(x− 1)(x− λ)

λ = (β−αq)(βq−α)
(β−α)(βq−αq)
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The action of PGL2(k) on k3\k induces an action on

{(α, β)}:
{(α, β)} −→ {(A · α,A · β)}, ∀A ∈ GL2(k)

Under which, E is mapped into

E ′ : y2 = (x− A · α) (x− A · αq) (x− A · β) (x− A · βq) .

λ′ :=
(A · β − A · αq)(A · βq − A · α)

(A · β − A · α)(A · βq − A · αq)
λ = λ′

or the Legendre forms are invariant under this action.
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Therefore, by transitivity of the action of PGL2(k) on

k3\k, the α in the pair (α, β) can be fixed to an ε ∈ k3 \ k.

Thus, we hereafter consider only the pairs {(ε, β)}

From now we assume the Type I curves to be

E : y2 = (x− ε) (x− εq) (x− β) (x− βq)
ε, β ∈ k3 \ k, #{ε, εq, β, βq} = 4

λ = β−εq
β−ε · β

q−ε
βq−εq
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To count the number of isomorphic classes of Type I el-

liptic curves, we first count the number of λ.

µ :=

(
εq −ε
1 −1

)
· λ

Since λ 6= 0, 1,∞, µ 6= ε, εq,∞.

Define

A =:

( −µ + ε + εq −ε1+q

1 −µ
)

and

B :=σ2
A σA A.
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Lemma 2:

1. Given a λ, there exists a β or E is Type I iff

A · β = βq

2. The above condition is equivalent to

B · β = β.

Then one can find β from λ as solutions of a quadratic

equation,hence find E which have the covering C.

Thus, it is easy to test if an elliptic curve is of Type I.
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3. When such a β exists or E is of Type I,

B 6≡
( ∗ ∗

0 ∗
)

mod k×3

i.e., the quadratic equation will not degenerate into a

linear one.

4. Let the discriminant D := (TrB)2 − 4(detB) (∈ k)

then there exists such a β given an λ iff D ∈ (k)2;

5.

D = 0 =⇒



∃C ∈ GL2(k), C2 ≡

(
1 0

0 1

)
mod k×

β = C · ε
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Density of Type I curves

Corollary 1

For the Type I E defined by having the covering C or

defined by λ,

#{λ} ≈ 1

2
q3.
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Type II curves:

Type II elliptice curve E are k3-isomorphic to

E '
/k3

y2 = x(x− 1)(x− λ)

λ =
(
αq−αq3
αq−α

)1+q3
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Density of Type II curves

Lemma 3: For Type II elliptic curves defined by λ,

#{λ} = Θ(q3)



Elliptic and hyperelliptic curves with weak coverings, ECC2007 36

Explicit construction of the covering C −→ E

q = 9007199254741813, (17 digits), q3: 168bit

k = F9007199254741813,

k3 = F90071992547418133 = k[x]/〈x3 − 2〉.

Consider a Type I curve :

C0/k3 : y2 = (x− α)(x− αq)(x− β)(x− βq)
∃ε ∈ k3 s.t. ε3 = 2, α = ε + 1, β = α2.

#(C0(k3)) = 730750818665651281401256783079976841670686577776

= 24 ∗ 45671926166603205087578548942498552604417911111
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Definition equation of C

One can construct the g = 3 non-hyperelliptic covering

C of C0 over k as a degree 4 canonical curve :

C/k : 5749228520209069X3Y + 3918009341123426X3Z + 4705833439190178X2Y 2

+ 1000799917193535X2Y Z + 271497561211062X2Z2 + 5003999585967674XY 3

+ 6835218765053317XY 2Z + 787824098066752XY Z2 + 2501999792983837XZ3

+ 271497561211062Y 4 + 1959004670561713Y 3Z + 5754599523862825Y 2Z2

+ 8192706571108627Y Z3 + 1860526658303369Z4 = 0


