From now on: non-binary field £;
non-square d € k.

E(k)=A(z,y) €k xk:
z° + y° = 1+ dz’y°}
Is a commutative group with

(z1,91) + (%2, ¥2) = (23, y3)
defined by Edwards addition law:

Iy — T1Y2 + Y12
1 +dzizoY1Y0
. Y1Y2 — T1T
Y3 =

1 —dz120Y192
Birationally equivalent to
(1/e)v? = ud + (4/e —2)u’ + u
where e =1 — d.

Represent (z,y) € E(k)

by (X : Y : Z) € P?(k);

i.e., (X,Y,Z) € k> with Z £ 0
and (X2 +Y?)Z? = 74 + dX?Y?
represents (X/Z,Y/Z) € E(k).

10M (10 field mults)

+ 1S (1 field squaring)

+ 1D (1 field mult by d)

+ 7add (7 field additions)

to obtain sum (X3 : Y3 : Z3)

of (X1 : Y1 : Zl), (X2 : Y2 : ZQ).

Don't have to make distinctions
for equal inputs, negatives, etc.

What if we want to make
distinctions to gain speed?
For example, speed up doubling?

2(z, y)

[Ty + YT Yy — TT
-\ 1+ dzzyy' 1 — dzzyyy

What if we want to make
distinctions to gain speed?
For example, speed up doubling?

2(z, y)

[Ty + YT Yy — TT
-\ 1+ dzzyy' 1 — dzzyyy

- 2Ty y2 — z° save
T\ 1+ dz2y?’ 1 — dz2y2) mults

What if we want to make
distinctions to gain speed?
For example, speed up doubling?

2(z, y)

[Ty + YT Yy — TT
-\ 1+ dzzyy' 1 — dzzyyy

- 2Ty y2 — z° save
T\ 1+ dz2y?’ 1 — dz2y2) mults

([2zy y? — z° low deg
72 + 42" 1 — dz2y2) (Joye)

What if we want to make
distinctions to gain speed?
For example, speed up doubling?

2(z, y)
TY +yr Yy — T
(1 + d:z::z:yy’ 1 — da:a:yyy>
Y ° — z?) save
1+dm2 2" 1 — dg2y2) mults:

e
(2oy - > low deg
~(

2+ 92" 1 da:2 2) (Joye)
2Ty y — 332 > even
>

72 + 42 ' 2 — 32 —y lower

What if we want to make
distinctions to gain speed?
For example, speed up doubling?

TY + Y Yy — IT
1 +dzzyy 1 — dzzyyy

2Ty y — z° save
1+ dz2y2' 1 — dg2y2) mults:

-
e
_(2zy Y- — T >Iowdeg
(
(

72 + 42" 1 — dz2y2) (Joye)
2Ty y2 — z° > even
2

3;2_|_y2’2_$2_y lower

(z + y)? y? — 2
T2 4 72 2 — g2 — y?

3M (3 field mults)

+ 4S (4 field squarings)
+ 6add (6 field additions)
to double (X1 Y7 Zl):

B = (X1+Y1)%,
C = X%,

D =Y?,
E=C+D,
H= 2%
J=E —2H,
X3 =(B—E)J,
Y3 = E(C — D),

73 =EJ.

Comparison of doubling costs
if curve parameters are small:

System Cost

Projective 5M + 6S
Projective if a = —3 |7TM + 35S
Hessian M + 1S
Doche/Icart/Kohel 3|2M + 7S
Jacobian 1M + 8S
Jacobian if a = —3 |3M + 58
Jacobi quartic 2M + 6S
Jacobi intersection |3M + 4S
Edwards 3M + 4S
Doche/Icart/Kohel 2|2M + 58

EFD! EFD! EFD! EFD! EFD!
e.g. Doche/Icart/Kohel paper says
3M+48S for Doche/lcart/Kohel 2.

Jacobian ¢ = —3 vs. Edwardes:
Jac-3 Edwards

Double|3M+5S |3M+4S
Triple |[7TM4+7S |9M-+4S
Add 11M+5S|10M+1S+1D
Readd |10M+4S|{10M+1S+1D
Mixed |7TM+4S |9M+1S+1D
Unified|unclear |[10M+1S+1D

Jac-3 speedup for readd:
Chudnovsky/Chudnovsky 1986;
“Chudnovsky coordinates” etc.

Edwards tripling:

Bernstein /Birkner/Lange/Peters
2007; independently

Hisil /Carter/Dawson 2007.

A sensible ElIGamal-type system
(van Duin, sci.crypt, 2006):

Everyone knows standard point B,

prime order g, on “Curve25519":
Z/(2°°° —19); d =1—1/121666.

Signer has 32-byte secret key n.
Everyone knows signer's 32-byte
public key: compressed nB.

To verify (m, compressed R, t):
verify tB = H(R, m)R + nB.

To sign m: generate a secret s;
R=sB;t= H(R, m)s+n mod gq.

Notes: 1. No inversions mod q.
2. Send R, not H(R, m).

Batch verification of many

t7;B — h'iRz' — 57;2 check

> Uit B—> cvihi Ry — > v 5
— 0 for random 128-bit v;.
(Naccache et al., Eurocrypt 1994;
Bellare et al., Eurocrypt 1998)

Use subtractive multi-scalar
multiplication algorithm:

if n1 > no > --- then
niPL+n2Po+n3P3+ - =

(m1 —qn2)P1L+n2(qP1 + P2) +
n3P3; + - -- where ¢ = |n1/ns].
(credited to Bos and Coster by

de Roolj, Eurocrypt 1994;

see also tweaks by Wei Dai, 2007)

Verifying 100 signatures
requires a 201-scalar mult
with 101 256-bit scalars
and 100 128-bit scalars.

Subtractive algorithm then uses
~ 24.4 - 256 readds and
~ 0.8 - 256 mixed adds.

S/M = 0.8, small parameters:
~ 845M /signature with Jacobian;
~ 695M /signature with Edwards.
Use Edwards coordinates!

Can similar speeds be achieved
by genus-2 hyperelliptic curves?
Current attempts seem very slow.

We've counted mults

(with various S/M, D/M) for
Edwards, Jac-3, Hessian, et al.
in NAF; width-4 sliding windows;
JSF; accelerated ECDSA:;

batch verification, as above;
fixed-point scalar mult; and
several side-channel situations.

Edwards consistently wins!
Should even beat Montgomery
for big single-scalar mult.

Need to measure overheads too.
Planning new Edwards software.
Expect new speed records.

Dimitrov/Imbert/Mishra 2005,
Doche/Imbert 2006:

Mix doublings with triplings to
gain speed for single-scalar mult.

Bernstein /Birkner/Lange/Peters
2007: Have analyzec
Edwards, Jac-3, et al.
with 5423 combinations of

bit size, doubling/tripling ratio,

windowing strategy.
Planning more combinations.

Conclusions: Triplings are useful

for Jac-3, 3DIK, et al.
But Edwards wins solidly.

Importance of doubling/tripling ratio (200 bits, all shapes)
1 T T T T T T T T T T T T T T 1T

2400
2380
2360
2340
2320
2300
2280
2260
2240
2220
2200
2180
2160
2140
2120
2100
2080
2060
2040
2020
2000
1980
1960
1940
1920
1900
1880
1860
1840
1820
1800
1780
1760
1740
1720
1700
1680
1660
1640
1620
1600

Std-Jac
Std-Jac-3 4

Jacobian ;

Jacobian-3

3DIK

Std-Jac

Edwards
3DIK &

» Jacobian

-« Std-Jac-3

- Jacobian-3

- Edwards

Y O A
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

3DIK —— Jacobian ———— Std-Jac
Edwards ———— Jacobian-3 —s—— Std-Jac-3 -

Importance of doubling/tripling ratio (200 bits, all shapes)
1 T T T T T T T T T T T T T T 1T

2400
2380
2360
2340
2320
2300
2280
2260
2240
2220
2200
2180
2160
2140
2120
2100
2080
2060
2040
2020
2000
1980
1960
1940
1920
1900
1880
1860
1840
1820
1800
1780
1760
1740
1720
1700
1680
1660
1640
1620
1600

Std-Jac
Std-Jac-3 4

Jacobian s

Jacobian-3 5

3DIK

Std-Jac

Edwards _
3DIK &

« Jacobian

« Std-Jac-3

- Jacobian-3

- Edwards

Y O A
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

3DIK —— Jacobian ———— Std-Jac
Edwards ——— Jacobian-3 —s—— Std-Jac-3 -

New directions in ECC

We're working on several items:

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Ec

Ec

warda

warc

s for
s for

orecomputation!

palrings!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Ec

Ec

Ec

warda

warc

warc

s for
s for
s for

orecomputation!
palrings!
oresident!

Edwards implementations!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!
Edwards implementations!

Edwards standardization!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:
Edwards for ECM!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:
Edwards for ECM!
Edwards for ECPP!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!
Edwards implementations!

Edwards standardization!

And beyond ECC:
Edwards for ECM!
Edwards for ECPP!
Edwards for ECXY/Z!

cr.yp.to/newelliptic.html

New directions in ECC

We're working on several items:

Ec

Ec

Ec
Ec

Ec

warda

warc

warc

warc

warda

s for
s for
s for

orecomputation!
palrings!
oresident!

s implementations!

s standardization!

And beyond ECC:
s for ECM!
s for ECPP!

Ec
Ec

Ec

warda

warda

warc

s for ECXY/!
Return of the Hyperelliptic!

cr.yp.to/newelliptic.html

=S A[R

LLIPTIC

STRII(ES BACI(

ﬂ'ii,u—-"".

